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Introduction

Research questions that motivate most studies in statistics-based sciences are causal in
nature

What can statistics say about causation?

How can Bayesian inference help in questions about causation?

The usual motto is “correlation is not causation”

Dominant methodology has excluded causal vocabulary both from its mathematical
language and from its educational programs

Yet, statisticians invented randomized experiments, universally recognized as a powerful
aid in investigating causal relationships
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Statistics has a great deal to say about certain problems of causal inference

Statistical models used to draw causal inferences are different from those commonly
used to draw associational inferences

Variety of questions under causality heading

✓ the philosophical meaningfulness of the notion of causation
✓ deducing the causes of a given effect
✓ understanding the details of a causal mechanism

I will focus on measuring the effects of causes because this seems to be a place where
statistics, which is concerned with measurement, has major contributions to make
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The purpose is to present a model that is complex enough to allow us to formalize basic
intuitions concerning causes and effects, to define causal effects and to make assumptions
allowing estimation of such effects clear and explicit

A statistical framework for causal inference is the one based on potential outcomes.

✓ It is rooted in the statistical work on randomized experiments by Fisher (1918, 1925)
and Neyman (1923), as extended by Rubin (1974, 1976, 1977, 1978, 1990) and
subsequently by others to apply to nonrandomized studies and other forms of
inference

This perspective was called “Rubin’s Causal Model” by Holland (1986) because it viewed
causal inference as a problem of missing data, with explicit mathematical modeling of the
assignment mechanism as a process for revealing the observed data.
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Associational Inference vs Causal Inference

Standard statistical models for associational inference relate two (or more) variables in a
population

The two variables, say Y and A, are defined for each and all units in the population and
are logically on equal footing

Joint distribution of Y and A

Associational parameters are determined by this joint distribution: for example, the
conditional distribution of Y given A describes how the distribution of Y changes as A
varies

A typical associational parameter is the regression of Y on A, that is, the conditional
expectation E(Y ∣A)
Associational inference is simply descriptive

Role of time
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Associational Inference vs Causal Inference

Causal inference is different

Use of language of experiments

Model for causal inference starts with a population of units (persons, places, or things at
a particular point in time) upon which a cause or a treatment may operate or act

A single person, place, or thing at two different times comprises two different units

The terms cause and treatment will be used interchangeably

The effect of a cause is almost always relative to another cause: “A causes B” means
relative to some other condition that may include “not A”

The language of experiments: “treatment” vs “control”

The key notion in causal inference is that each unit is potentially exposable to any one of
the causes.

✓ “She did well in the math test because she received good teaching”
✓ “She did well in the math test because she is a girl”
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Introducing Model and Notation

Let W be the variable that indicates the treatment, 0 or 1, to which each unit is exposed

The critical feature of the notion of a cause is that the value of W for each unit could
have been different

W must be a variable that is, at least in principle, manipulable

Role of time: the fact that a unit is exposed to a cause or treatment must occur at a
specific time

Pre-exposure or pre-treatment variables, sometimes labelled covariates, X , whose values
are determined prior to exposure to the cause

Post-exposure or response variables, Y , on which to measure the effect of the cause
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Introducing Model and Notation

To represent the notion of causation, we postulate the existence of two variables, Y (1)
and Y (0) for each unit, which represent the potential responses or potential outcomes
associated with the two treatments

These are the values of a unit’s measurement of interest after (a) application of the
treatment and (b) non-application of the treatment (i.e., under control)

A causal effect is, for each unit, the comparison of the potential outcome under treatment
and the potential outcome under control

For example, we can say that treatment 1 (relative to treatment 0) causes the effect
Yi(1) −Yi(0) for unit i
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The Science

Units Covariates Potential Outcomes Unit-level Summary
X Y (1) Y (0) Causal Effects Causal Effects

1 X1 Y1(1) Y1(0) Y1(1) vs Y1(0) Comparison of
⋮ ⋮ ⋮ ⋮ ⋮ Yi(1) vs Yi(0)
i Xi Yi(1) Yi(0) Yi(1) vs Yi(0) for a common
⋮ ⋮ ⋮ ⋮ ⋮ set of units
N XN YN(1) YN(0) YN(1) vs YN(0)

“The fundamental problem of causal inference”: each potential outcome is observable but
we can never observe all of them

Summary causal effects: the critical requirement is that for a comparison to be causal it
must be a comparison of Yi(1) and Yi(0) on a common set of units
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SUTVA

The table for the Science requires the Stable Unit Treatment Value Assumption (SUTVA,
Rubin, 1990) to be adequate

No interference between units, that is, neither Yi(1) nor Yi(0) is affected by what action
any other units received

No hidden version of treatments: no matter how unit i received treatment 1, the outcome
that would be observed would be Yi(1)
Also implicit in the representation is that the Science is not affected by how or whether
we try to learn about it, whether by randomized block designs, observational studies or
other methods
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SUTVA and Other Assumptions

Without these assumptions causal inference using potential outcomes is not impossible,
but it is far more complicated

SUTVA is commonly made, or studies are designed to make SUTVA plausible

Bayesian inference can help addressing causal questions in the presence of interference
(Forastiere et al., 2016)

Nothing is wrong with making assumptions and causal inference is impossible without
making assumptions; assumptions are the strand that links statistics to science

It is the scientific quality of the assumptions, not their existence, that is critical

In causal inference assumptions are always needed, and they typically do not generate
testable implications, so it is imperative that they are explicated and justified
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Scientific and Statistical Solutions

Because at least half of the potential outcomes are always missing, as such, the
fundamental problem of causal inference is not solved by observing more units

The notation explicitly representing both potential outcomes is an exceptional
contribution to causal inference

Despite its apparent simplicity it did not arise until 1923 with the work of Neyman and
only in the context of completely randomized experiments

We had to wait until the seventies with the work of Rubin to use the notation of potential
outcomes to describe causal effects in any setting, including observational studies

Despite the fundamental problem of causal inference, there are some solutions to the
fundamental problem
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Scientific and Statistical Solutions

The scientific solution exploits various homogeneity or invariance assumptions

✓ Y t−1
i (0) = Y t

i (0)
✓ Then, expose units to 1 and measure Yi(1)
✓ The scientist has made an untestable homogeneity assumption

Science has made enormous progress using this approach, and it is the approach that we
informally use often in our lives

The statistical solution uses the observed values of W and Y (W ), together with
assumptions about the way units where exposed to either W = 1 or W = 0 to address the
problem
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The Role of the Assignment Mechanism

The key in Rubin’s work is to see randomization as just one way to create missing and observed
data in the potential outcomes

There are many other processes for creating missing data and those were called assignment
mechanisms (Rubin, 1978)

The assignment mechanism gives the probability of each vector of assignments, W , given the
Science:

Pr(W ∣ X ,Y (1),Y (0))

Before Rubin (1975), there were written descriptions of assignment mechanisms, but no formal
mathematical statement or notation showing the possible dependence of treatment assignments
on BOTH potential outcomes

Yobs : the collection of observed potential outcomes, with Yobs,i =WiYi(1) + (1 −Wi)Yi(0)
Ymis : the collection of missing or unobserved potential outcomes, with
Ymis,i = (1 −Wi)Yi(1) +WiYi(0)
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The Role of the Assignment Mechanism

The definition of the assignment mechanism states that probability of something that we
do now, W , can depend, not only on things that we observe now, X , or even Yobs in
sequential experiments, but moreover on other things that will never even be realized,
Ymis . Yet, as a formal probability statement, it is mathematically coherent

Understanding the assignment mechanism’s possible dependence on values of the
potential outcomes: think of unobserved - to the analyst of the data - covariates U that
are associated with the future potential outcomes and are used by the assigner of
treatments, hypothetical or real, in addition to X

Pr(W ∣ X ,Y (1),Y (0),U) = Pr(W ∣ X ,U)
When this expression is averaged over the values of U for fixed values of X , Y (1), Y (0)
to calculate the assignment mechanism, the result yields dependence on Y (1), Y (0)
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Types of Assignment Mechanism

The assignment mechanism is unconfounded (with the potential outcomes, Rubin, 1990)
if:

Pr(W ∣ X ,Y (1),Y (0)) = Pr(W ∣ X )
An unconfounded assignment mechanism is probabilistic if all the unit-level probabilities,
the propensity scores (Rosenbaum and Rubin, 1983), are strictly between zero and one:

0 < ei = Pr(Wi ∣ X ) < 1

An unconfounded probabilistic assignment mechanism is called strongly ignorable

Classical randomized experiments are special cases of strongly ignorable assignment
mechanisms

In observational studies the assignment mechanism is not known and we need to make
assumptions in order to be able to draw inference on causal effects

Design stage of observational studies
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Distinguishing between the Science and the Assignment Mechanism

Using the potential outcomes notation maintains the critical distinction between what we
are trying to estimate, the Science, and what we do to learn about it, the
assignment mechanism

This distinction was in the work of Neyman or Fisher, so that extensions to observational
studies of classical methods of inference in randomized experiments, due to Fisher (1925)
and Neyman (1923), are natural within the RCM framework
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Modes of Inference: Causal Inference Based Solely on the Assignment Mechanism

Both Fisher and Neyman proposed methods of causal inference based solely on the
randomization distribution of statistics induced by classical randomized assignment
mechanisms

Fisher’s Exact p-values for Sharp Null Hypotheses

Fisher’s method was essentially a stochastic proof by contradiction

He wanted to prove that H0 = Yi(1) = Yi(0)∀i is wrong using the randomization
distribution under H0
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Modes of Inference: Causal Inference Based Solely on the Assignment Mechanism

Neyman’s Randomization-Based Estimates and Confidence Intervals

Neyman (1923) showed that, in a completely randomized experiment, ȳ1 − ȳ0 is unbiased
(averaging over all randomizations) for the average causal effect and propose a large-sample
interval estimate for the average causal effect, which became the standard one in much of
statistics and applied fields

Neyman’s approach has advantages over Fisher’s in that it can deal with random sampling of units
from a population; much of the theory behind propensity score methods is generalization of
Neyman’s approach

Fisher’s approach has the obvious advantage in not requiring large samples for the exactness of its
probabilistic statements

Fisher’s and Neyman’s approaches rarely addressed the real reasons we conduct studies: to learn
about which interventions should be applied to future units

The third leg of the RCM is critical: pose a model on the Science and derives the
Bayesian posterior predictive distribution of the missing potential outcomes
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Elements of the RCM

The first leg is using potential outcomes to define causal effects no matter how we try to
learn about them: First define the Science

The second leg is to describe the process by which some potential outcomes will be
revealed: Second, posit an assignment mechanism

The third leg is placing a probability distribution on the Science to allow formal
probability statements about the causal effects: Third, incorporate scientific
understanding in a model for the Science.

The Bayesian approach directs us to condition on all observed quantities and predicts, in
a stochastic way, the missing potential outcomes of all units, past and future, and thereby
makes informed decisions
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Bayesian Model-Based Imputation

The benefits of modeling the science in causal inference include the ability to deal with
more complex situations and to summarize results more logically

We directly confront the fact that at least half of the potential outcomes are missing and
create a posterior predictive distribution for them

From a model on the science, Pr(X ,Y (1),Y (0)), and the model for the assignment
mechanism, we can find the posterior predictive distribution of Ymis , given the observed
values of W , X , and Yobs

Pr(Ymis ∣X ,Yobs ,W )∝ Pr(X ,Y (1),Y (0))Pr(W ∣X ,Y (1),Y (0))

We can calculate the posterior distribution of any causal estimand by multiply imputing
Ymis : draw a value of Ymis , impute it, calculate the causal estimand, redraw Ymis , and so
on
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Bayesian Model-Based Imputation

Two critical facts simplify this approach

Pr(X ,Y (0),Y (1)) = ∫ ∏ f (Xi ,Yi(0),Yi(1)∣p(θ)dθ,

where f (.∣θ) is an iid model for each unit’s science given a hypothetical parameter θ with
prior (or marginal) distribution p(θ)
This modelling task if far more flexible than specifying a regression model
If the treatment assignment mechanism is ignorable then when the expression for the
assignment mechanism is evaluated at the observed data, it is free of dependence on Ymis .
So the explicit conditioning on W can be ignored (hence the term ignorable assignment
mechanism):

Pr(Ymis ∣X ,Yobs ,W )∝ Pr(Ymis ∣X ,Yobs)
Pr(Ymis ∣X ,Yobs) = ∫ Pr(Ymis ∣X ,Yobs , θ)Pr(θ,X ,Yobs)dθ

where Pr(θ∣X ,Yobs) is the posterior distribution of θ, equal to the prior distribution p(θ)
times the likelihood of θ
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Bayesian Model-Based Imputation

Thus by supplementing the assignment mechanism with a model on the science, we can
adopt, a Bayesian framework to inference for causal effects

The Bayesian perspective is extremely flexible and is especially convenient for
summarizing the current state of knowledge about the science in complex situations

Assuming this summary of the current state of knowledge is accurate, this can be
combined with various assessment of costs and benefits of various decisions to choose
which decision to make (Deheija, 2003)
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Extensions

The potential outcome framework combined with Bayesian inference allowed us to make
enormous progress in formalizing and solving problems in both randomized and
observational studies

The framework allowed to understand the meaning of IV estimation developed in
Econometrics, by bridging randomized experiments with noncompliance with IV settings

It provided insights into understanding causal mechanisms through principal stratification,
an approach to handling intermediate variables within the RCM
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Principal Stratification

Many scientific problems require that treatment comparisons be “adjusted” for post-treatment
variables

Treatment noncompliance

Missing outcomes (dropout)

Censoring (or truncation) by death

Surrogate or biomarker endpoints

Combinations of complications

Understanding the causal pathways by which a treatment affects an outcome: Associate
& Dissociative Effects - Direct & Indirect Effects

“Endogenous” selection problems
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Principal Stratification

Principal stratification gained used for defining causal estimands of interest

Methods of inference differ a lot depending on assumptions one is willing to pose and the
type of inference one wants

Likelihood/Bayesian model-based inference as advocated in Imbens and Rubin (1997)

Inference on the causal estimands of interest is complicated by the fact that we only
observed mixture of distributions: we need to disentangle these mixtures
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Basic Notation

Units: i = 1, . . . ,N

Zi = Binary treatment assignment:

Zi = z ∈ {0,1} = {Control Treatment,Active Treatment}

Under SUTVA, each unit i has two potential outcomes for each post-treatment variable

Si(z): Potential outcome for the intermediate post-treatment variable given assignment to
treatment z

Yi(z ,Si(z)) = Yi(z): Potential outcome for the primary endpoint given assignment to treatment z
with intermediate variable equal to Si(z)
Observed variables

Xi : vector of pre-treatment variables
Zi : actual treatment assignment
Sobs
i = Si(Zi) = ZiSi(1) + (1 − Zi)Si(0): observed intermediate outcome

Y obs
i = Yi(Zi) = ZiYi(1) + (1 − Zi)Yi(0): realized outcome
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Principal Stratification: Definition

If the post-treatment variable S is binary, subjects can be classified into four groups according
to the joint potential values of the intermediate potential variable, (Si(0),Si(1)):

00 = {i ∶ Si(0) = 0,Si(1) = 0}
10 = {i ∶ Si(0) = 1,Si(1) = 0}
01 = {i ∶ Si(0) = 0,Si(1) = 1}
11 = {i ∶ Si(0) = 1,Si(1) = 1}

This cross-classification of units is the (basic) principal stratification with respect to the
(binary) post-treatment variable S . Formally,
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Principal Stratification and Principal Effects (Frangakis and Rubin, 2002)

The basic principal stratification P0 with respect to post-treatment variable S is the partition
of units i = 1, . . . ,n such that, all units within any set of P0 have the same vector
(Si(0),Si(1))

A principal stratification P with respect to post-treatment variable S is a partition of the units
whose sets are unions of sets in the basic principal stratification P0.

Let P be a principal stratification with respect to the post-treatment variable S . Then a
principal effect with respect to that principal stratification is defined as a comparison of
potential outcomes under control versus active treatment within a principal stratum g in P,
that is, a comparison between the ordered sets

{Yi(0) ∶ i ∈ g} and {Yi(1) ∶ i ∈ g}
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Properties of Principal Strata and Principal Effects

The principal stratum Gi ≡ (Si(0),Si(1)) to which unit i belongs, is not affected by
treatment assignment for any principal stratification P

✓ The value of the ordered pair (Si(0),Si(1)) is not affected by treatment assignment

✓ Principal stratum membership only reflects subject’s characteristics: it can be
regarded as a pre-treatment variable

Principal effects are properly defined causal effects because they are defined as
comparison of potential outcomes Yi(0) and Yi(1) on a common set of units: the (union
of) principal strata
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Dissociative and Associative Principal Effects

Dissociative Principal Effects: An effect on outcome that is dissociative with an effect on
intermediate variable is defined as a comparison between the ordered sets

{Yi(0) ∶ Si(0) = Si(1)} and {Yi(1) ∶ Si(0) = Si(1)}

Associative Principal Effects: An effect on outcome that is associative with an effect on
intermediate variable is defined as a comparison between the ordered sets

{Yi(0) ∶ Si(0) ≠ Si(1)} and {Yi(1) ∶ Si(0) ≠ Si(1)}
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The role of unconfounded assignment mechanisms in principal stratification analysis

If treatment assignment is uncounfouded:

P (Zi ∣Si(0),Si(1),Yi(0),Yi(1),Xi) = P (Zi ∣Xi) ,

then

the principal stratum membership Gi ≡ (Si(0),Si(1)) is guaranteed to have the same distribution
in both treatment arms (within cells defined by pre-treatment variables):

Gi�Zi ∣Xi

potential outcomes are independent of the treatment assignment given the principal strata:

Yi(0),Yi(1)�Zi ∣Gi ,Xi

✓ Treated and control units can be compared conditional on a principal stratum. It is this
latent regularity that is exploited in IV settings
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General Structure of Bayesian Inference

The quantities associated with each unit are, Yi(1),Yi(0),Si(1),Si(0),Xi ,Zi , four of which,
Y obs
i = Yi(Zi),Sobs

i = Si(Zi),Zi ,Xi are observed and the rest two Ymis
i = Yi(1 − Zi), and

Smis
i = Si(1 − Zi) are unobserved

Assuming unit exchangeability and by appealing to de Finetti’s theorem, we can write the
probability density function of all random variables as

Pr(Y (0),Y (1),S(0),S(1),Z ,X ) = ∫ ∏
i

Pr(Yi(0),Yi(1),Si(0),Si(1),Zi ,Xi , θ)p(θ)dθ,

where θ is the global parameter with prior distribution p(θ)
The posterior predictive distribution of the missing potential outcomes is:

Pr(Ymis ,Smis ∣Y obs ,Sobs ,Z ,X )

∝ ∫ ∏
i

Pr(Zi ∣Yi(0),Yi(1),Gi ,Xi , θ)Pr(Yi(0),Yi(1)∣Gi ,Xi , θ)Pr(Gi ∣Xi , θ)Pr(Xi ∣θ)p(θ)dθ

∝ ∫ ∏
i

Pr(Yi(0),Yi(1)∣Gi ,Xi , θ)Pr(Gi ∣Xi , θ)p(θ)dθ
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This suggests that, to conduct Bayesian inference for ignorable assignment mechanisms
with intermediate variables, one need to specify two models:

✓ Pr(Yi(0),Yi(1) ∣ Gi ,Xi , θ): the distribution of potential outcomes Y (0) and Y (1)
conditional on principal strata (and covariates), and

✓ Pr(Gi ∣ Xi , θ): the distribution of principal strata conditional on the covariates

and the prior distribution, p(θ)
The posterior distribution of θ is generally not tractable. Instead one can use a Gibbs
sampler to simulate from the joint posterior distribution Pr(θ,Smis ∣ Y obs ,Sobs ,Z ,X ) by
iteratively drawing between the two conditional distributions Pr(Smis ∣ Y obs ,Sobs ,Z ,X , θ)
and Pr(θ ∣ Y obs ,Sobs ,Smis ,Z ,X ), the latter of which is proportional to the complete
intermediate data likelihood

These random draws provide posterior inference for the estimands
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From a Bayesian perspective, PCEs are always identified, because with proper prior
distributions of the parameters posterior distributions of the causal estimands are always
proper

But some estimands are weakly identified, with substantial regions of flatness in their
posterior distributions

Bayesian inference for causal estimands can be sharpened by additional assumptions, such
as monotonicity or exclusion restrictions
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Inference for PCEs can also be sharpen (reduce posterior variance) by secondary outcomes
and covariates (Mealli and Pacini, 2013; Mattei et al., 2013) in weakly identified models.
The inherent mixture structure of principal strata analysis underpins this improvement

Extensions to

✓ Multiple intermediate variables (Mattei and Mealli, 2007; Frumento et al., 2012)
✓ Multivalued intermediate variables (Feller et al., 2016)
✓ Continuous intermediate variables, using Bayesian semiparametric models (Schwartz

et al., 2011)

The field is still very fertile and I strongly to encourage students to engage in applied and
theoretical work in causal inference

Fabrizia Mealli (University of Florence) Causal Inference: a Bayesian Perspective 36 / 36


