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ADVERSARIAL HYPOTHESIS TESTING (AHT)

• Use concepts from Adversarial Risk Analysis (ARA)

• Agent (Defender D) needs to ascertain which of several hypotheses holds, based on
observations from a source

• Another agent (Attacker A) alters the observations to induce the Defender to make
a wrong decision (and get a benefit)

• AHT problem studied from the Defender’s perspective

• Defender needs to forecast the Attacker’s decision, simulating from the correspond-
ing Attacker’s decision making problem
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AHT: SIMPLE EXAMPLE

• Defender D needs to decide whether a batch of e-mails includes spam or not

• D has beliefs about the standard flow of legit and spam messages

• Attacker A alters such flow in an attempt to confound the Defender and gain some
benefit

• Both agents obtain different rewards depending on whether

– batch is accepted or not by the Defender

– batch includes just legit messages or not
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ADVERSARIAL HYPOTHESIS TESTING

• Test of two simple hypotheses: Θ = {θ0, θ1}

• Observation x generated according to a model depending on θ

• x altered to y by A’s action a

• y observed by D ⇒ D’s decision d on θ based on y, without observing x

• Depending on d and actual θ ⇒ losses (utilities) for both agents

• Efforts by A in minimising the loss

• Support for D in choosing θ to minimise the loss

• Example: X ∼ E(θ) failure time s.t. θ0 ≪ θ1 ⇒ better reliability for θ0
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AHT: BI-AGENT INFLUENCE DIAGRAM (BAID)

Θ

lD lAD A

X

Y

• Decisions: D (depending on Y ) and A

• Random: Θ → X → Y (Y influenced also by the decision A)

• Losses: lD and lA depending on Θ and related decisions (lA also on decision D)

• Node: decision (square), uncertainty (circle), deterministic (double), utility (hex.)

• Arrow: conditional relation (solid), information available at decision time (dashed)
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SOLVING THE DEFENDER’S PROBLEM
Influence diagram of the Defender’s decision problem

Θ

lDD A

X

Y

Attacker’s node is now random
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SOLVING THE DEFENDER’S PROBLEM
Assessed by Defender D:

• Belief πD(θ) on hypotheses:

pD(θ = θi) = πDi , i = 0,1, with πDi ≥ 0 and πD0 + πD1 = 1

• Belief πD(x|θ) on how data depend on the hypothesis:

X|θi ∼ πD(x|θi), i = 0,1

• Belief πD(y|x, a) on how action a ∈ A by Attacker modifies actual x into observed y

• Belief πD(a) on the attack a performed by the Attacker

• Standard 0-1-cD loss function lD(d, θ) with decision space D = {d0, d1} s.t.

dj = {Defender supports θj}, j = 0,1
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SOLVING THE DEFENDER’S PROBLEM
Defender’s loss function

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 0 1

d1 cD 0

• 0 best loss, associated with the right decision

• cD ≤ 1 (without loss of generality)
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SOLVING THE DEFENDER’S PROBLEM

• Solve: argmind∈D
∑1

i=0 lD(d, θi)πD(θi|y)

• ⇒ d0, i.e. support for θ0, optimal solution for D if and only if πD(θ1|y) ≤ cD πD(θ0|y)

• From

πD(θi|y) =
πD(θi, y)

πD(y)
=

∫∫
πD(θi)πD(y|x, a)πD(x|θi)πD(a) dx da

πD(y)

=
πDi
∫∫

πD(y|x, a)πD(x|θi)πD(a) dx da
πD(y)

, i = 0,1

• ⇒ support for θ0, optimal decision for D if and only if

πD1

∫∫
πD(y|x, a)πD(x|θ1)πD(a) dx da ≤ cD π

D
0

∫∫
πD(y|x, a)πD(x|θ0)πD(a) dx da

• Here we use Bayes Theorem πD(θi|y) =
πD(y|θi)πDi
πD(y)

and neglect the denominator

in the minimisation
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SOLVING THE ATTACKER’S PROBLEM
• All Defender’s beliefs obtained in standard way, except for πD(a)

• Defender’s belief πD(a) on Attacker’s action comes from considering his decision
problem

• Defender’s node is now random

Θ

lA AD

X

Y
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SOLVING THE ATTACKER’S PROBLEM
Needed for Attacker A:

• Belief πA(θ) on hypotheses:

pA(θ = θi) = πAi , i = 0,1, with πAi ≥ 0 and πA0 + πA1 = 1

• Belief πA(x|θ) on how data depend on the hypothesis:

X|θi ∼ πA(x|θi), i = 0,1

• Belief πA(y|x, a) on consequences of his action a ∈ A, modifying actual x into y

• Belief πA(d|y) on the decision d taken by the Defender upon observing y

• Loss function lA(d, θ, a) = ljk(a), with

– j = 0,1 depending on Defender’s decision dj (i.e., supporting θj)

– k = 0,1 depending on actual θk

– No cost directly associated with chosen action a (but only on consequences)
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SOLVING THE ATTACKER’S PROBLEM
Attacker’s loss function

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 l00(a) l01(a)

d1 l10(a) l11(a)

• Better for the Attacker if the Defender makes mistakes

⇒ l00(a) ≥ l01(a) and l10(a) ≤ l11(a)
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SOLVING THE ATTACKER’S PROBLEM
Attacker’s loss function

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 1 0

d1 c1A c2A

0 ≤ c1A ≤ c2A ≤ 1

• Best loss for Attacker (0) when Defender supports θ0 and she should not

• Worst loss for Attacker (1) when Defender supports θ0 and she should

• Intermediate cases: worse for Attacker when Defender supports θ1 and actual hy-
pothesis is θ1
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SOLVING THE ATTACKER’S PROBLEM

• Optimal decision for Attacker given by a∗ s.t.

a∗ = argmina∈A
∑1

j=0

∑1
i=0

∫∫
lA(dj, θi, a)πA(dj|y)πA(θi)πA(y|x, a)πA(x|θi) dy dx

• Defender does not know πA(θ), πA(x|θ), πA(y|x, a), πA(d|y) and lA(d, θ, a)

• ⇒ model uncertainty around them through random probabilities and losses
F = (ΠA(θ),ΠA(x|θ),ΠA(y|x, a),ΠA(d|y), LA(d, θ, a))

• ⇒ find optimal random attack

A∗ = argmina∈A
∑1

j=0

∑1
i=0

∫∫
LA(dj, θi, a)ΠA(dj|y)ΠA(θi)ΠA(y|x, a)ΠA(x|θi) dy dx

• ⇒ required distribution through πD(a) = Π(A∗ = a) (assuming discrete A, but
possible also for continuous one)
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SOLVING THE ATTACKER’S PROBLEM

• πD(a) approximated through simulation, sampling from F

• Samples
(
Πk
A(θi),Π

k
A(x|θi),Πk

A(y|x, a),Πk
A(dj|y), LkA(dj, θi, a)

)
, k = 1, ...,K

• ⇒ a∗k = argmina∈A
∑1

j=0

∑1
i=0

∫∫
LkA(dj, θi, a)Π

k
A(dj|y)Πk

A(θi)Π
k
A(y|x, a)Πk

A(x|θi) dy dx

• ⇒ π̂D(a) ≈ #{a∗k = a}/K
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SOLVING THE ATTACKER’S PROBLEM
Choice of random probabilities and loss F

• ΠA(θ) based on πD(θ) with some uncertainty around it

– ΠA(θ) modelled as a Dirichlet distribution with mean πD(θ), if discrete

– ΠA(θ) modelled as Dirichlet process with base measure πD(θ), if continuous

• ΠA(x|θ) based on πD(x|θ) with some uncertainty around it

• ΠA(y|x, a) based on πD(y|x, a) with some uncertainty around it

• Parametric form for LA(d, θ, a) with distribution over such parameters

• On the contrary, ΠA(d|y) requires strategic thinking as the Defender needs to as-
sess the Attacker’s beliefs about which decision d she will make, given that she
observes y

• ⇒ could be the start of a hierarchy of decision making problems!
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SOLVING THE ATTACKER’S PROBLEM

• Defender should solve the problem

argmind∈D
∑1

i=0 lD(d, θi)πD(θi|y) equivalent to

argmind∈D
∑1

i=0

∫ ∫
lD(d, θi)πD(θi)πD(y|x, a)πD(x|θi)πD(a) dx da

• Attacker does not know ingredients of above integral

• ⇒ assume uncertainty over them through random loss LAD(d, θ) and random distri-
butions ΠA

D(θ), ΠA
D(y|x, a), ΠA

D(x|θ) and ΠA
D(a)

• ⇒ get corresponding random optimal decision

• Assessment of ΠA
D(a) (what Defender believes that Attacker thinks about her beliefs

concerning the attack to be implemented)
⇒ strategic component leading to the next stage in the hierarchy

• Iterate until no further information is available, then choosing non-informative prior
over the involved probabilities and losses
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NUMERICAL EXAMPLE

• Two hypotheses: θ0 = 2 and θ1 = 1

• Two decisions: d0 chooses θ0 = 2 and d1 chooses θ1 = 1

• Priors over the hypotheses: πD0 = πD1 = 1/2

• Actual data X|θi exponentially distributed E(θi), with uncertainty about θi

• Data x modified by Attacker into y, with actions

– a0: x→ y = x (keeping)

– a1: x→ y = 2x (doubling)

– a-1: x→ y = x/2 (halving)

• Suppose (for illustration) Defender knows probabilities πD(a) used by Attacker to
choose actions:

πD(a0) = 1/2, πD(a1) = 1/6 and πD(a−1) = 1/3
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NUMERICAL EXAMPLE

• Two decisions: d0 chooses θ0 = 2 and d1 chooses θ1 = 1

• Loss function L(d, θ)

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 0 1

d1 3/4 0
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NUMERICAL EXAMPLE
Adopt decision d0 (i.e., accept θ0 = 2) if and only if

πD1

[
θ1 e−θ1 y πD(a0) + θ1 e

−θ1 y2 πD(a1) + θ1 e−θ1 2y πD(a-1)
]

≤

3
4
πD0

[
θ0 e−θ0 y πD(a0) + θ0 e

−θ0 y2 πD(a1) + θ0 e−θ0 2y πD(a-1)
]

• ⇔ 2e−
y
2 +3e−y − 5e−2y − 6e−4y ≤ 0

• ⇔ y ≲ 0.3723 is observed

(Note that θ = 2 leads to a smaller mean w.r.t. θ = 1, i.e. 1/2 vs. 1)

• Note that a small change in probabilities, i.e. πD0 = 1/3 and πD1 = 2/3 (and other
probabilities and losses kept as before) ⇒ d1 optimal regardless of observed y
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NUMERICAL EXAMPLE
Defender does not accurately know πD(a) ⇒ ARA

• ΠA(θ1) drawn uniformly over [1/4,3/4], and ΠA(θ0) = 1−ΠA(θ1)

• ΠA(x|θ), where θ ∈ {θ0, θ1}, from a Gamma distribution Ga(α, β) with mean α/β =
θ and variance α/β2 = σ2 uniformly chosen over [1/2,2] s.t. variance randomness
induces that of ΠA(x|θ)

• ΠA(y|x, a) Dirac distributions coinciding with those of πD(y|x, a)

• ΠA(d|y) looking at the likelihood h(y|d, a) of y under different choices of d and a,
mixing them through a random allocation of probabilities to each action
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NUMERICAL EXAMPLE

• Attacker assumes the Defender is modelling the data with an exponential distribution

• Likelihood h(y|d, a) of y under different choices of d and a

– d0 chooses θ0 = 2 and d1 chooses θ1 = 1

– a0 (keeping), a1 (doubling) and a-1 (halving)

• Example

– y reported and a1 chosen ⇒ x = y/2 true value

– d0 chosen ⇒ h(y|d0, a1) = 2e−y

Actions

a0 a1 a-1

D’s
Decision

d0 2e−2y 2e−y 2e−4y

d1 e−y e−y/2 e−2y
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NUMERICAL EXAMPLE

• Defender assessing the probabilities (ϵ0, ϵ1, ϵ-1) assigned by the Attacker to each
strategy through a Dirichlet distribution Dir(1,1,1)

• ⇒

PA(d = d1|ϵ0, ϵ1, ϵ-1, y)
∑1

j=-1 ϵj h(y|d1, aj)∑1
j=-1 ϵj h(y|d0, aj) +

∑1
j=-1 ϵj h(y|d1, aj)

=
ϵ0 e−yϵ1 e

−y
2 + ϵ-1 e−2y

2 (ϵ0 e−2y + ϵ1 e−y + ϵ-1 e−4y) + ϵ0 e−y + ϵ1 e
−y
2 + ϵ-1 e−2y

• Distribution of (ϵ0, ϵ1, ϵ-1) induces the randomness of PA(d = d1|y)

• PA(d = d0|y) = 1− PA(d = d1|y)
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NUMERICAL EXAMPLE
Random loss function LA(d, θ, a) based on table below

• C1
A fixed at 0

• C2
A uniformly drawn from [1/2,1]

Actual Hypothesis

θ0 θ1

D’s
Decision

d0 1 0

d1 C1
A C2

A
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NUMERICAL EXAMPLE

• Attacker’s random expected losses for the three actions

•

ΨA(a0) =

∫ [
ΠA(d0|y = x)ΠA(θ0)ΠA(x|θ0) + C2

AΠA(d1|y = x)ΠA(θ1)ΠA(x|θ1)
]

dx

ΨA(a1) =

∫ [
ΠA(d0|y = 2x)ΠA(θ0)ΠA(x|θ0) + C2

AΠA(d1|y = 2x)ΠA(θ1)ΠA(x|θ1)
]

dx

ΨA(a-1) =

∫ [
ΠA(d0|y = x

2
)ΠA(θ0)ΠA(x|θ0) + C2

AΠA(d1|y = x
2
)ΠA(θ1)ΠA(x|θ1)

]
dx

• Random models induce randomness in these expected losses

• K = 100,000 observations drawn from the corresponding distributions

• ⇒ Estimates π̂D(a0) ≈ 0.04, π̂D(a1) ≈ 0.85 and π̂D(a-1) ≈ 0.11

• Optimal action: d0 when y ≲ 0.7374 (different from previous solution)
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NUMERICAL EXAMPLE

1 Set pj = 0, -1 ≤ j ≤ 1.

2 For k = 1 to K

3 Generate π1,kA ∼ U(1/4, 3/4). Compute π0,kA = 1− π1,kA .

4 Generate σ20,k ∼ U(1/2, 2). Compute αk
0 = θ20/σ

2
0,k ; βk0 = θ0/σ

2
0,k.

5 Generate σ21,k ∼ U(1/2, 2). Compute αk
1 = θ21/σ

2
1,k ; βk1 = θ1/σ

2
1,k

6 Generate (ǫk0 , ǫ
k
1 , ǫ

k
-1) ∼ Dir(1, 1, 1)..

7 Generate C2,k
A ∼ U(1/2, 1).

8 ψk
A(a0) = π0,kA

∫
(1− g(ǫ0, ǫ1, ǫ-1, x)) f(x|αk

0 , β
k
0 ) dx

+ C2,k
A π1,kA

∫
g(ǫ0, ǫ1, ǫ-1, x) f(x|αk

1 , β
k
1 ) dx

9 ψk
A(a1) = π0,kA

∫
(1− g(ǫ0, ǫ1, ǫ-1, 2x)) f(x|αk

0 , β
k
0 ) dx

+ C2,k
A π1,kA

∫
g(ǫ0, ǫ1, ǫ-1, 2x) f(x|αk

1 , β
k
1 ) dx

10 ψk
A(a-1) = π0,kA

∫
(1− g(ǫ0, ǫ1, ǫ-1, x/2)) f(x|αk

0 , β
k
0 ) dx

+ C2,k
A π1,kA

∫
g(ǫ0, ǫ1, ǫ-1, x/2) f(x|αk

1 , β
k
1 ) dx

11 Determine j∗ = argmin
-1≤j≤1

ψk
A(aj).

12 Set pj∗ = pj∗ + 1.

13 Set π̂D(aj) = pj/K, -1 ≤ j ≤ 1.
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BATCH ACCEPTANCE MODEL
• Decision: accept or not a batch of items received over a period of time, some of

which could be faulty, thus entailing potential security and/or performance problems

• Type of issues arising in areas such as screening containers at international ports,
accepting batches of electronic messages or admitting packages of perishable prod-
ucts or electronic components, among others

• Consider different scenarios for a batch with m items in a period;

– Loss depending if at least one faulty item is included (1 or m faulty items give
the same loss)

– Loss depending on the number of included faulty items among the m

• Consider different Attacker’s strategies:

– S1. Attacker adds some, new faulty items

– S2. Attacker modifies few original items converting them into faulty ones

– S3. Attacker combines strategies S1 and S2

• Start with non-adversarial hypothesis testing and then include adversaries
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BATCH ACCEPTANCE MODEL

• Decision maker D (Defender ) receives a batch with two types of items x

– 0 (acceptable items)

– 1 (faulty items)

• D needs to decide whether to accept (d0) or reject (d1) the batch

• D observes the batch size, modelled by a Poisson distribution Po(λ) over a unit
period (or a homogeneous Poisson process, HPP, of parameter λ)

• Distribution on λ as a consequence of past experience:

– Gamma prior Ga(a, b) on λ

– r items arrived after t periods ⇒ posterior λ|t, r ∼ Ga(a+ r, b+ t)

• λ will have no impact when D observes the actual value of m
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BATCH ACCEPTANCE MODEL

• Item acceptable with probability θ

Z designates item acceptability, s.t. z = 0 acceptable and z = 1 faulty

⇒ pD(z = 0|θ) = θ and pD(z = 1|θ) = 1− θ

• Acceptability of an item independent of the arrival process ⇒ arrival of acceptable
items is HPP of parameter λθ (Coloring or Thinning Theorem)

• Early knowledge: Beta prior Be(α, β) for θ

• Past observations: r received items with s acceptable (and r − s faulty)

⇒ posterior θ|r, s ∼ Be(α+ s, β+ r − s)

• To fix ideas, in a unit period we shall have

– Total number of items m|λ ∼ Po(λ)
– Total number of acceptable items x|λ, θ ∼ Po(λθ)
– (Conditional on m) total number of acceptable items x|m, θ ∼ Bin(m, θ)
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BATCH ACCEPTANCE MODEL
Influence diagram for batch acceptance problem without adversaries

X

lDD

Θ Λ

M
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BATCH ACCEPTANCE MODEL
Scenario A: Winner takes it all

• Batch with m items in a period

• Allowing one faulty item is as bad as allowing several of them, because of the en-
tailed security or performance problems

• Loss function given by

Batch of m Items

All Acceptable Some Faulty

p = θm p = 1− θm Exp. Loss

D’s
Decision

Accept, d0 0 1 1− θm

Reject, d1 c 0 c θm
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BATCH ACCEPTANCE MODEL

• Suppose batch size m known to Defender D ⇒ λ not relevant

• Expected losses of both decisions

lD(d0) = Eθ [1− θm] = 1− Eθ [θm]

lD(d1) = Eθ [c θm] = cEθ [θm]

• Decision: accept the batch (d0) if and only if

1− Eθ [θ
m] ≤ cEθ [θ

m] ⇐⇒ Eθ [θ
m] ≥ 1

1+ c

• Eθ [θm] decreases as m increases ⇒ threshold value mA

⇒ rejection of the batch (d1) if m > mA

• mA recursively obtained for posterior Be(α+ s, β+ r − s) on θ from

Eθ [θm] =
∏m−1
k=0

α+ s+ k

α+ β+ r+ k
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BATCH ACCEPTANCE MODEL

• Suppose batch size m unknown to Defender D, with distribution p(m|λ),m ∈ N

• Expected losses of both decisions (now summing over all possible values of m)

lD(d0) = 1− Eθ
(
Eλ
(∑∞

m=0 θ
mp(m|λ)

))

lD(d1) = cEθ
(
Eλ
(∑∞

m=0 θ
mp(m|λ)

))

• Decision: accept the batch (d0) if and only if

Eθ

(
Eλ

( ∞∑

m=0

θmp(m|λ)
))

>
1

c+1

• If p(m|λ) Poisson, then accept the batch (d0) if and only if

Eθ

(
Eλ

(
eλ(θ−1)

))
>

1

c+1
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BATCH ACCEPTANCE MODEL

• Gamma distribution Ga(a, p) over λ and Beta distribution Be(α, β) over θ

• Eλ(eλ(θ−1)) =

∫ ∞

0
e−λ(1−θ)

pa

Γ(a)
λa−1e−pλdλ =

pa

(p+1− θ)a

Eθ(Eλ(e
λ(θ−1))) = Eθ(

pa

(p+1− θ)a
)

=

∫ 1

0

pa

(p+1− θ)a
θα−1(1− θ)β−1

B(α, β)
dθ

=
pa

(p+1)aB(α, β)

∫ 1

0
θα−1(1− θ)β−1(1− θ

p+1
)−adθ

=
pa

(p+1)a
2F1(a, α;α+ β;

1

p+1
)

• ⇒ accept the batch when
pa

(p+1)a
2F1(a, α;α+ β;

1

p+1
) >

1

c+1
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BATCH ACCEPTANCE MODEL
Scenario B: Each fault counts

• Batch with m items in a period

• Loss depending on the number of included faulty items

• Loss function given by

Batch of m Items

All Acceptable x Acceptable

p = θm p =
(
m
x

)
θx (1− θ)m−x Exp. Loss

D’s
Decision

Accept, d0 0 (m− x) c′ mc′ (1− θ)

Reject, d1 c 0 c θm
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BATCH ACCEPTANCE MODEL

• Suppose batch size m known to Defender D ⇒ λ not relevant

• Expected losses of both decisions

lD(d0) = Eθ [mc′ (1− θ)] = mc′ (1− Eθ [θ])

lD(d1) = Eθ [c θm] = cEθ [θm]

• Decision: accept the batch (d0) if and only if

mc′ (1− Eθ [θ]) ≤ cEθ [θ
m] ⇐⇒ Eθ [θm]

m
≥ c′

c
(1− Eθ [θ])

• Eθ [θm] decreases as m increases ⇒ threshold value mB ⇒ rejection of the batch
(d1) if m > mB

• mB recursively obtained for posterior Be(α + s, β + r − s) on θ as the smallest
integer satisfying

Eθ [θm]

m
≤ c′

c

β+ r − s

α+ β+ r
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ADVERSARIAL BATCH ACCEPTANCE MODEL

• Attacker might alter the batch X to Y and, thus, perturb the data flow process to
confound the Defender and reach some objectives

• Batch of size m, with m known by Attacker A

• Attacker A might add items to get a final batch of size n

• Defender D observes n before making her decision

• Gain bigger for A if D accepts one of A’s faulty items rather than a faulty item from
another source
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ADVERSARIAL BATCH ACCEPTANCE MODEL

X

lD lAD A

Y

Θ Λ

MN
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ADVERSARIAL BATCH ACCEPTANCE MODEL
We study three possible attack strategies, identifying

• Attacker’s decision variables

• how the item arrival process changes

• Attacker’s loss function

• how to solve the problem

The strategies are:

• S1. Attacker adds some, new faulty items

• S2. Attacker modifies few original items converting them into faulty ones

• S3. Attacker combines strategies S1 and S2
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ADVERSARIAL BATCH ACCEPTANCE MODEL
• n: number of items in a batch observed by Defender D

• x: acceptable items in the batch

• m− x: original faulty items (O-faults)

• n−m: faulty items produced by the Attacker A (A-faults)

X

lDD A

Y

Θ Λ

MN

(a) Defender’s problem

X

lAD A

Y

Θ Λ

MN

(b) Attacker’s problem

40



ADVERSARIAL BATCH ACCEPTANCE MODEL
S1. Attacker adds y1 new faulty items

• m+ y1 data received by Defender include

– x acceptable items

– m− x O-faults

– y1 A-faults

• Attacker needs to decide y1, which is random to Defender

• Suppose first that Defender knows pD(y1|m), distribution of Y1|m

• Loss structure for Defender

Final Batch of n Items

All Acceptable Some Faulty

p = q1(n|λ) p = 1− q1(n|λ) Exp. Loss

D’s
Decision

Accept, d0 0 1 1− q1(n|λ)
Reject, d1 c 0 c q1(n|λ)
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ADVERSARIAL BATCH ACCEPTANCE MODEL

• n = m+ y1

• Probability of having a final batch of n items reflects all possible initial sizes of the
batch and included faulty items, not just m and y1, respectively:

p1(n|λ) =
n∑

m=0

pD(m|λ) pD(y1 = n−m|m)

• Probability that all items are acceptable (i.e., x = m = n and y1 = 0)

q1(n|λ) =
pD(m = n|λ) pD(y1 = 0|m = n)

p1(n|λ)
θn

• λ relevant here since it provides information on m
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ADVERSARIAL BATCH ACCEPTANCE MODE
Final Batch of n Items

All Acceptable Some Faulty

p = q1(n|λ) p = 1− q1(n|λ) Exp. Loss

D’s
Decision

Accept, d0 0 1 1− q1(n|λ)
Reject, d1 c 0 c q1(n|λ)

• Expected losses of both decisions

lD(d0) = 1− Eθ [Eλ [q1(n|λ)]]

lD(d1) = cEθ [Eλ [q1(n|λ)]]

• Decision: accept the batch (d0) if and only if

Eθ [Eλ [q1(n|λ)]] ≥
1

1+ c

• Decision obtained through simulation
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ADVERSARIAL BATCH ACCEPTANCE MODE
• pD(y1|m) (and thus q1(n|λ)) unknown to Defender D ⇒ use ARA

• x ∈ {0,1, . . . ,m} acceptable items

• y1 ∈ {0,1, . . .} added A-faults

• h unitary gain (for A) due to each O-fault

• g unitary gain (for A) due to each A-fault

• f unitary cost (for A) for adding each A-fault

• Attacker A’s loss function, depending on batch composition and decision by D

Final Batch Composition

Acceptable O-Fault A-Fault

x m− x y1

D’s
Decision

Accept, d0 0 −h f − g

Reject, d1 0 0 f
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ADVERSARIAL BATCH ACCEPTANCE MODE

Final Batch Composition

Acceptable O-Fault A-Fault

x m− x y1

D’s
Decision

Accept, d0 0 −h f − g

Reject, d1 0 0 f

• Attacker A’s losses associated to Defender D’s decisions when A chooses y1

lA(d0, y1, x) = −h (m− x) + (f − g) y1

lA(d1, y1) = f y1
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ADVERSARIAL BATCH ACCEPTANCE MODE

• Losses: lA(d0, y1, x) = −h (m− x) + (f − g) y1 and lA(d1, y1) = f y1

• Problem faced by A: choose y1 to minimise expected loss for original batch size m

ψA(y1|m) = pA(d0|m+ y1)

∫ ( m∑

x=0

pA(x|m, θ) lA(d0, y1, x)
)
pA(θ) dθ

+ (1− pA(d0|m+ y1)) lA(d1, y1)

= y1 (f − g pA(d0|m+ y1))

− h pA(d0|m+ y1)

∫ ( m∑

x=0

pA(x|m, θ) (m− x)

)
pA(θ) dθ,

• pA(d0|m+ y1) reflects A’s beliefs about D’s decision d0 to accept the batch given
that she knows the batch size is n = m+ y1
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ADVERSARIAL BATCH ACCEPTANCE MODE

• Defender does not know Attacker’s probabilities and parameters of his loss function
⇒ (F,G,H, PA(d0|n), PA(θ), PA(x|m, θ)) random quantities

• Look for random optimal attack Y ∗
1 (m) defined through

argmin
y1





y1 (F −GPA(d0|m+ y1))

−H PA(d0|m+ y1)

∫ ( m∑

x=0

PA(x|m, θ) (m− x)

)
PA(θ) dθ

• Draw from random quantities and get sample {Y ∗
1k(m)}Kk=1 of size K from Y ∗

1 (m)

• Estimate p̂D(y1|m) = P (y∗1(m) = y1) ≈ #{Y ∗
1k(m) = y1}/K

⇒ get the optimal amount of added faulty items (e.g. from the mode)
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ADVERSARIAL BATCH ACCEPTANCE MODE
Typical assumptions about Attacker’s random utilities and probabilities

• Gains and costs uniformly distributed:

– F ∼ U(f1, f2)

– G ∼ U(g1, g2)

– H ∼ U(h1, h2)

• PA(x|m, θ) Binomial distribution Bin(m, θ) (i.e. not a random distribution)

• PA(θ) from a Dirichlet process with Beta distribution Be(α+ s, β + r − s) as base
parameter and concentration parameter ρ

• PA(d0|n) modelled through a uniform distribution, although this might require further
recursion if deeper strategic thinking is considered
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ADVERSARIAL BATCH ACCEPTANCE MODE

• Other two strategies:

– S2. Attacker modifies few original items converting them into faulty ones

– S3. Attacker modifies few original items converting them into faulty ones and
adds some new ones

• Very similar approach: not presented here except for the Attacker A’s loss function,
depending on batch composition and decision by D
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ADVERSARIAL BATCH ACCEPTANCE MODE
S2. Attacker modifies few original items converting them into faulty ones

• h unitary gain (for A) due to each O-fault

• g unitary gain (for A) due to each A-fault

• e unitary cost (for A) for changing any item to make it faulty

Final Batch Composition

Acceptable O-Fault A-Fault

x− y02 m− x− y12 y2

D’s
Decision

Accept, d0 0 −h e− g

Reject, d1 0 0 e
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ADVERSARIAL BATCH ACCEPTANCE MODE
S3. Attacker modifies few original items converting them into faulty ones and adds some
new ones

• h unitary gain (for A) due to each O-fault

• g unitary gain (for A) due to each A-fault

• e unitary cost (for A) for changing any item to make it faulty

• f unitary cost (for A) for adding each A-fault

Final Batch Composition

Acceptable O-Fault
A-Fault

Injected Modified

x− y02 m− x− y12 y1 y2

D’s
Decision

Accept, d0 0 −h f − g e− g

Reject, d1 0 0 f e
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DISCUSSION

• New ARA approach to dealing with the AHT problem

• Symmetric losses and strong common knowledge assumptions typical of non-cooperative
game theory have been avoided

• Multiple Attackers and/or multiple Defenders cases in the AHT problem are also of
interest

– need to differentiate when Attackers are completely independent or totally coor-
dinated or are such that their attacks influence somehow each other

– possibility of several Defenders, possibly cooperating but with different observa-
tions of the data flow

• New strategies, e.g. Attacker could add (apparently) acceptable items to confound
the Defender

• Possible application in adversarial signal processing, such as in Electronic Warfare
where pulse/signal environment is generally very complex with many different radars
transmitting simultaneously and signals possibly jammed by hostile radars
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ACCEPTANCE SAMPLING
Work stemming from Lindley and Singpurwalla (1991)

• Manufacturer M (she) is trying to sell a batch of items to a consumer C (he) who
may either accept (A) or reject (R) the batch provided by M

• C ’s decision depends on the evidence provided by M to C, based on a sample from
an inspection that M may perform

• The decision M faces is whether to offer a sample to C and, if so, the size of such
sample

• Both M and C are assumed to be expected utility maximisers

• Lindley and Singpurwalla assume that M , who decides before C, knows C ’s pref-
erences and beliefs, as well as they share other relevant distributions, a too strong
common knowledge assumption

• ARA allows us to overcome such issue (for Bernoulli acceptance sampling problem)

• Addressed also a life testing problem
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ACCEPTANCE SAMPLING: GAME THEORY
Sequential problem

• M decides the sample size n to offer to C (⇒ C knows n)

• C has available

– pC(θ), i.e., beliefs about the product quality θ

– pC(d|θ, n), i.e., beliefs about the experiment result d (number of defective items)
given θ and decision n of M

– uC(c, θ), i.e., utility function based on decision c: accept (A) or reject (R) the
batch
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ACCEPTANCE SAMPLING: GAME THEORY

• C computes for each d and n

– Posterior distribution pC(θ|d, n) ∝ pC(θ)pC(d|θ, n)
– Expected utility ψC(d, n, c) =

∫
uC(c, θ)pC(θ|d, n)dθ

– Optimal decision c, given d and n:

c∗(d, n) = argmax
c∈{A,R}

ψC(d, n, c)

• All the above known by M who switches to her problem
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ACCEPTANCE SAMPLING: GAME THEORY
M knows pC(θ|d, n), ψC(d, n, c) and c∗(d, n) for each d and n

• M has available

– pM(θ), i.e., beliefs about the product quality θ

– pM(d|θ, n), i.e., beliefs about the experiment result d (number of defective items)
given θ and decision n of M

– uM(c, θ), i.e., utility function based on decision c: accept (A) or reject (R) the
batch
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ACCEPTANCE SAMPLING: GAME THEORY

• M computes for each d and n

– ψM(n, d, θ) = uM(c∗(d, n), n, θ), i.e., utility based on C ’s decision (known un-
der the common knowledge assumption)

– ψM(n, θ) =
∫
ψM(n, d, θ)pM(d|θ, n) dd, i.e., expected utility (w.r.t. d)

– ψM(n) =
∫
ψM(n, θ)pM(θ) dθ, i.e., expected utility (w.r.t. θ)

– n∗ = argmaxψM(n), i.e. optimal decision by M
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ACCEPTANCE SAMPLING: ARA

• pM(θ), pM(d|θ, n) and uM(c, n, θ) available as before

• Earlier c∗(d, n) was known but now pM(c|d, n) is needed (and its computation re-
quires thinking about C ’s behaviour)

• ⇒ Need to compute ψM(n, d, θ) =
∑

c∈{A,R} uM(c, n, θ)pM(c|d, n) to get rid of c

• pC(θ), pC(d|θ, n), and uC(c, θ) unknown to M (no common knowledge)

• ⇒ random utilities and probabilities generated from F = (UC(c, θ), PC(θ), PC(d|θ, n))

• Computation of random functional Ψ∗
C(d, n, c) =

∫
UC(c, θ)PC(θ)PC(d|θ, n)dθ

• Computation of the random optimal alternative, given d and n:

C∗(d, n) = argmax
c∈{A,R}

Ψ∗
C(d, n, c)

• ⇒ empirical distribution of C∗(d, n) to estimate pM(c|d, n)
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BERNOULLI ACCEPTANCE SAMPLING
The manufacturer’s viewpoint

• Sample of size n offered by manufacturer, possibly defective with probability θ

• Sampling model binomial for d defective items with pM(d|θ, n) ∼ Bin(n, θ)

• θ with a beta distribution pM(θ) ∼ βe(β1, β2)

• Utility function uM(c, n, θ) as in Lindley and Singpurwalla (1991):

– uM(A, n, θ) = b1 + b2θ+ b4n,

– uM(R, n, θ) = b3 + b4n

– b4 unit cost of providing each sample unit

– b2 penalty for defectiveness; the higher θ, the worse the corresponding cost

– b1 > b3: preference for accepted items rather than rejected

– b3 > b1 + b2: preference for rejection rather than acceptance of very low quality
lot (for reputation)
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BERNOULLI ACCEPTANCE SAMPLING
Assumptions on C

• Same sampling model binomial for d defective items with pM(d|θ, n) ∼ Bin(n, θ)

• Random distribution PC(θ) given by

– Beta distribution pc(θ) ∼ βe(α1, α2)

– Uniform distributions α1 ∼ U ∈ [a11, a12], and α2 ∼ U ∈ [a21, a22]

– Compare with Lindley and Singpurwalla (1991) who considered pc(θ) ∼ βe(α1, α2),
with known α1 and α2

• Random utility UC(c, θ), similar to Lindley and Singpurwalla (1991):

– uC(A, θ) = a1 + a2θ,

– uC(R, θ) = a3,

– where a1 > a3 > a1 + a2 and a2 < 0
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BERNOULLI ACCEPTANCE SAMPLING
An example (values of the parameters omitted)

n = 0 1 2 3 4 5 6 7 ...
p̂M(A|d, n) d = 0 x 0.4 0.49 0.55 0.61 0.65 0.68 0.71

d = 1 x 0.22 0.34 0.42 0.49 0.54 0.58 0.62
d = 2 x x 0.19 0.29 0.37 0.44 0.49 0.53
d = 3 x x x 0.16 0.26 0.33 0.4 0.45
... x x x x 0.14 0.23 0.3 0.36

Acceptance probabilities for various manufacturer decisions and experimental results
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BERNOULLI ACCEPTANCE SAMPLING

n = 1 2 3 4 5 6
ψM(n) 4.25 4.325 4.374 4.408 4.43 4.444

... 7 8 9 10 11 12
ψM(n) 4.453 4.456 4.457 4.456 4.451 4.444

Expected utilities of various manufacturer decisions (n = 9 optimal decision)
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CLASSIFICATION
• Classification consists in assigning instances from a given domain X, described by

a set of discrete- or continuous-valued attributes, into a set of classes C

• A good performance measure for classifiers is the misclassification error which is the
fraction of instances that are misclassified by the model

• Not all the attributes might be available for all instances (e.g. temperature could
be missing): the incomplete dataset could be either ”repaired” in a preprocessing
phase, or handled in some special way by modeling algorithms

• Data might be corrupted by some noise: classifiers are not always able to detect and
then handle the noise

• To take the simplest example, do two instances with exactly the same attribute val-
ues but different class labels result from noise or rather from an insufficient set of
attributes which cannot fully differentiate instances from different classes?

• Such questions can be often asked, but rarely answered, unless we accept a some-
what evasive answer that both hypotheses represent simply two different views on
the same phenomenon
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BAYESIAN CLASSIFIERS

• Naive Bayes is a simple probabilistic classifier based on applying Bayes Theorem
with strong independence (naive) assumptions

• The basic idea of Bayes Theorem is that the outcome of a hypothesis or an event
can be predicted based on some evidences that can be observed

• In classification, the goal is to classify an instance based on its features

• Typically, the more evidences we can gather, the better the classification accuracy
can be obtained

• Cichosz, P. (2015), Data Mining Algorithms: Explained Using R, Wiley

install.packages("remotes")
remotes::install_github("42n4/dmr.util",force=TRUE)
remotes::install_github("42n4/dmr.data",force=TRUE)
library(dmr.util)
library(dmr.data)
library(dmr.stats)
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BAYESIAN CLASSIFIERS

P(B|A) =
P(A|B)P(B)

P(A|B)P(B) + P(A|BC)P(BC)

=
.95 · .001

.95 · .001+ .005 · .999 = 0.1598

bayes.rule <- function(prior, inv){prior*inv/sum(prior*inv)}
# let P(burglery)=0.001,
# P(alarm|burglery)=0.95,
# P(alarm|not burglery)=0.005
# calculate P(burglery|alarm)
bayes.rule(c(0.001, 0.999), c(0.95, 0.005))

• Bayes rule for an exhaustive set of mutually exclusive events

• Partition {A1, . . . , An} of Ω and B ⊂ Ω : P(B) > 0

P(Ai|B) =
P(B|Ai)P (Ai)∑n
j=1 P(B|Aj)P (Aj)
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CLASSIFICATION
outlook temperature humidity windy play

1 sunny hot high false N
2 sunny hot high true N
3 overcast hot high false P
4 rain mild high false P
5 rain cool normal false P
6 rain cool normal true N
7 overcast cool normal true P
8 sunny mild high false N
9 sunny cool normal false P
10 rain mild normal false P
11 sunny mild normal true P
12 overcast mild high true P
13 overcast hot normal false P
14 rain mild high true N

• Training set, in weather.txt, where the first four attributes describe weather con-
ditions and the last one classifies them as appropriate or not for playing sports

• Dataset unrealistic and unsuitable for evaluating the performance of classification
algorithms because of very small sample size, but good for illustrating the concepts
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BAYESIAN CLASSIFIERS
• The class-probability approach to Bayesian inference applies the Bayes rule to cal-

culate probabilities of the following form:

P (c = d|a1 = v1, a2 = v2, . . . , an = vn),

i.e. the probability of an instance belonging to class d if its attribute values are
v1, v2, . . . , vn, respectively

• The goal is to find the class d which maximizes

P (c = d|a1 = v1, . . . , an = vn) =
P (c = d)P (a1 = v1, . . . , an = vn|c = d)

P (a1 = v1, . . . , an = vn)

• Since the denominator is the same for all classes since it does not depend on a
class, the optimization is performed only for the numerator

• We could choose P (c = d) =
|T d|
|T | , where |T | is the number of instances in the

training phase and |T d| are those belonging to the class d

weather=read.table("weather.txt",header=T)
pdisc(weather$play) # prior class probabilities
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BAYESIAN CLASSIFIERS

• The conditional joint probability of attribute values given the class cannot be directly
estimated from even a perfectly representative training set of any realistic size

• For most practical datasets, there are numerous attribute value combinations not
appearing at all, and most of those that do appear, appear exactly once

• This would lead as to estimating probabilities for most attribute value combinations
as 0 or 1/|T |

• Such estimates would be clearly useless for classification, because they do not allow
one to differentiate probabilities for instances with different attribute values

• Therefore, the conditional joint probability of attribute values given the class is cal-
culated as the product of per-attribute marginal conditional probabilities:

P (a1 = v1, . . . , an = vn|c = d) =
n∏

i=1

P (ai = vi|c = d)

68



BAYESIAN CLASSIFIERS

• The assumption holds only if the attributes are conditionally independent given the
class, which is unfortunately usually not true

• The naı̈ve Bayes classifier adopts this independence assumption, ignoring the fact
that it is rarely satisfied, and this gives the name ”naı̈ve”

• Probabilities of attribute values given the class estimated from training data

P (ai = vi|c = d) =
|T dai=vi|
|T d|

where |T dai=vi| is the number of instances in d for which the value of attribute ai is vi
and |T d| are those belonging to the class d

# conditional attribute value probabilities given the class
pcond(weather$outlook, weather$play)
pcond(weather$temperature, weather$play)
pcond(weather$humidity, weather$play)
pcond(weather$wind, weather$play)
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BAYESIAN CLASSIFIERS
> pdisc(weather$play)

N P
0.3571429 0.6428571
> pcond(weather$outlook, weather$play)

N P
overcast 0.0 0.4444444
rain 0.4 0.3333333
sunny 0.6 0.2222222
> pcond(weather$temperature, weather$play)

N P
cool 0.2 0.3333333
hot 0.4 0.2222222
mild 0.4 0.4444444
> pcond(weather$humidity, weather$play)

N P
high 0.8 0.3333333
normal 0.2 0.6666667
> pcond(weather$wind, weather$play)

N P
false 0.4 0.6666667
true 0.6 0.3333333
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BAYESIAN CLASSIFIERS

• To achieve the desired capability of calculating the conditional class probability given
attribute values it is sufficient to estimate the following probabilities from the training
set:

– P (c = d) for each class d ∈ C

– P (ai = vi|c = d) for each class d ∈ C, each attributeai and each value vi ∈ Ai

• This set of probabilities constitutes model representation for the naı̈ve Bayes classi-
fier

• To create such a model, one needs to estimate all these probabilities from the train-
ing set, which reduces to simple counting required to obtain |T dai=vi| and |T d|

• These counts can be calculated by a single iteration through the training set
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BAYESIAN CLASSIFIERS
data(weather,package="dmr.data")# Better to get weather this way
## create a naive Bayes classifier
nbc <- function(formula, data){class <- y.var(formula)
attributes <- x.vars(formula, data)
cc <- integer(nlevels(data[[class]])) # initialize class counts
names(cc) <- levels(data[[class]])
avc <- sapply(attributes, # initialize attribute-value-class counts
function(a)
matrix(0, nrow=nlevels(data[[a]]), ncol=nlevels(data[[class]]),

dimnames=list(levels(data[[a]]), levels(data[[class]]))))
for (i in (1:nrow(data))) # iterate through training instances
{cc[data[[class]][i]] <- cc[data[[class]][i]]+1 #increment class count
for (a in attributes) # increment attribute-value-class counts
avc[[a]][data[[a]][i],data[[class]][i]] <-
avc[[a]][data[[a]][i],data[[class]][i]]+1}

# calculate probability estimates based on counts
‘class<-‘(list(prior=cc/sum(cc), cond=sapply(avc, function(avc1)
t(apply(avc1, 1, "/", colSums(avc1))))),"nbc")}
nbw <- nbc(play˜., weather) # naive Bayes classifier for weather data
nbw
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BAYESIAN CLASSIFIERS
> $prior

no yes
0.3571429 0.6428571
> $cond$outlook

no yes
overcast 0.0 0.4444444
rainy 0.4 0.3333333
sunny 0.6 0.2222222
> $cond$temperature

no yes
cold 0.2 0.3333333
hot 0.4 0.2222222
mild 0.4 0.4444444
> $cond$humidity

no yes
high 0.8 0.3333333
normal 0.2 0.6666667
>$cond$wind

no yes
high 0.6 0.3333333
normal 0.4 0.6666667
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BAYESIAN CLASSIFIERS

• Applying the naı̈ve Bayes classifier to predict class probabilities for a given instance
x is even more straightforward

• We just need to multiply the prior class probability and the conditional probabilities
of the instance’s attribute values given the class, i.e. use P (ai = vi|c = d) with
vi = ai(x):

P (d|x) =
1

b
P (c = d)

n∏

i=1

P (ai = ai(x)|c = d)

• The normalizing constant b is given by

b =
∑

d′∈C
P (c = d

′
)

n∏

i=1

P (ai = ai(x)|c = d
′
)

• Note that all probabilities needed to classify an arbitrary instance are estimated dur-
ing model construction, and prediction requires just selecting and multiplying an
appropriate subset of them, corresponding to the attribute values of the classified
instance x
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BAYESIAN CLASSIFIERS
## naive Bayes prediction for a single instance
predict1.nbc <- function(model, x)

{
aind <- names(x) %in% names(model$cond)
bnum <- model$prior*apply(mapply(function(a, v)
model$cond[[a]][v,], names(model$cond), x[aind]),
1, prod)
bnum/sum(bnum)

}
## naive Bayes prediction for a dataset
predict.nbc <- function(model, data)
{
t(sapply(1:nrow(data), function(i) predict1.nbc(model, data[i,])))

}
# make predictions for the weather data

predict(nbw, weather)
cbind(predict(nbw, weather),weather$play)
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CLASSIFICATION
no yes

[1,] 0.79541735 0.20458265 1
[2,] 0.92103601 0.07896399 1
[3,] 0.00000000 1.00000000 2
[4,] 0.46351931 0.53648069 2
[5,] 0.06716418 0.93283582 2
[6,] 0.17763158 0.82236842 1
[7,] 0.00000000 1.00000000 2
[8,] 0.66032609 0.33967391 1
[9,] 0.13941480 0.86058520 2

[10,] 0.09747292 0.90252708 2
[11,] 0.42163100 0.57836900 2
[12,] 0.00000000 1.00000000 2
[13,] 0.00000000 1.00000000 2
[14,] 0.72160356 0.27839644 1
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CLASSIFICATION

• Classification: widely used supervised learning method, applied, e.g., in computer
vision, genomics, credit scoring and spam detection

• Currently, a major research area in Statistics and Machine Learning (ML)

• Most efforts focused on obtaining more accurate algorithms

• Less attention for a relevant aspect: presence of adversaries manipulating data to
deceive the classifier in order to obtain a benefit (e.g. credentials of bank account)

• Example: Fraud detection

– ML algorithms developed for detection ⇒ fraudsters learn how to evade them

– Detection more likely for huge transactions ⇒ smaller ones more frequently

• No common knowledge ⇒ Adversarial Risk Analysis (ARA)
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WHY ADVERSARIAL CLASSIFICATION?

• In multiple domains such as malware detection, automated driving systems, or fraud
detection, classification algorithms are susceptible to being attacked by malicious
agents willing to perturb the value of instance covariates to pursue certain goals

• Such problems pertain to the field of adversarial machine learning and have been
mainly dealt with, perhaps implicitly, through game-theoretic ideas with strong un-
derlying common knowledge assumptions

• These are not realistic in numerous application domains in relation to security and
business competition

• We present an alternative Bayesian decision theoretic framework that accounts for
the uncertainty about the attacker’s behavior using adversarial risk analysis concepts
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CLASSIFICATION UNDER ATTACKS

• Sentiment analysis problem: assess if a movie had positive or negative reviews

• 2400 IMDb reviews (1200 positive, 1200 negative) extracted from Kotzias et al (2015)

• 150 binary features indicating the presence or absence of the most common words
in the dataset

• Label indicating positive (y = 0) or negative (y = 1) review

• Attacker A: manipulate positive reviews ⇒ classified as negative ones

• Attacker B: manipulate negative reviews ⇒ classified as positive ones

• Attacks based on change of two words at most

• Accuracy of 4 classifiers over clean and attacked test data
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CLASSIFICATION UNDER ATTACKS

Classifier Clean data Attacked data
Attacker A

Attacked data
Attacker B

Logistic Regression 0.728± 0.005 0.322± 0.011 0.418± 0.010
Naive Bayes 0.722± 0.004 0.333± 0.009 0.405± 0.009
Neural Network 0.691± 0.019 0.338± 0.021 0.417± 0.015
Random Forest 0.720± 0.005 0.327± 0.011 0.397± 0.013

• Accuracy comparison (with precision) of four classifiers on clean and attacked data

• All models trained under same conditions, randomly splitting the dataset into train
and test subsets with sizes 90% and 10%, respectively

• Accuracy means and standard deviations are estimated via hold-out validation over
10 repetitions

• MAP (Maximum a posterior) under Gaussian prior for Logistic Regression

• Two hidden layers for Neural Network
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ADVERSARIAL HYPOTHESIS TESTING

• Already seen but now it goes in a different direction: classification

• Test of two simple hypotheses: Θ = {θ0, θ1}

• Observation x generated according to a model depending on θ

• x altered to y by A’s action a

• y observed by D ⇒ D’s decision d on θ based on y, without observing x

• Depending on d and actual θ ⇒ losses (utilities) for both agents

• Efforts by A in minimising the loss

• Support for D in choosing θ to minimise the loss
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BINARY CLASSIFICATION
• Classifier C receives two types of objects: malicious (y = +) or innocent (y = −)

• Objects have features x whose distribution depends on their type y

• Classification problems broken down into two separate stages:

– inference about pC(y|x), C ’s beliefs about type given features

– decision about class assignment yC, based on pC(y|x) and utility uC(yC, y)

• Node: decision (square), uncertainty (circle), deterministic (double), utility (hex.)

• Arrow: conditional relation (solid), information available at decision time (dashed)
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ADVERSARIAL CLASSIFICATION
• Adversary A chooses attack a s.t. actual x→ x′ = a(x) observed by C

• A attacks only for malicious instances (y = +)

• Nodes in bi-agent influence diagram: grey (A), white (C), striped (both A and C)

• Decisions: attack a by A and classification yC by C

• Utilities: uC(yC, y) for C and uA(yC, y, a) for A
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CLASSIFIER PROBLEM
Find class c(x′) = argmax

yC

∑

y∈{+,−}
uC(yC, y)pC(y|x′)

(ignore p(x′)) = argmax
yC

[
uC(yC,−)pC(x

′|−)pC(−)

+ uC(yC,+)pC(+)
∑

x∈X ′

pC(ax→x′|x,+)pC(x|+)

]

• Expected utility maximisation

• A(x): set of possible attacks for actual x

• X ′ = {x : a(x) = x′ for some a ∈ A(x)}: x’s potentially leading to observed x′

• pC(y): beliefs about the class distribution

• pC(x|y): beliefs about feature distribution given the class (under no attacks)

• uC(yC, y): utility in classifying yC with actual y

• pC(a|x, y): beliefs about A’s action, given x and y (Think of A’s behaviour!)
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ATTACKER PROBLEM• Find optimal attack

a∗(x, y) = argmax
a

∫ [
uA(+,+, a) p+ uA(−,+, a) (1− p)

]
fA(p|a(x))dp

= argmax
a

[uA(+,+, a)− uA(−,+, a)] pAa(x) + uA(−,+, a)
• A: modify x so that C classifies malicious instances as innocent (A’s maximum

expected utility)

• A: modify only malicious instances, i.e. y = +, and not innocent, i.e. y = −

• C ’s decision: uncertain for A

• uA(yC, y, a): utility for A when C says yC, actual label is y and the attack is a

• pA(c(x′)|x′): A’s beliefs about the classification result when C observes x′

• p = pA(c(a(x)) = +|a(x)): A’s beliefs about C classifying as malicious after
observing x′ = a(x)

• Uncertainty on p modelled via density fA(p|a(x)) with expectation pA
a(x).
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CLASSIFIER PROBLEM
• Find a∗(x, y) = argmaxa [uA(+,+, a)− uA(−,+, a)] pAa(x) + uA(−,+, a)

• C does not know A’s utilities uA and probabilities pA
a(x)

• C ’s uncertainty modelled through random utility UA and random expectation PA
a(x)

• Solve for the random optimal attack, optimising the random expected utility

A∗(x,+) = argmaxa

(
[UA(+,+, a)− UA(−,+, a)]PA

a(x) + UA(−,+, a)
)

• ⇒ pC(ax→x′|x,+) = Pr(A∗(x,+) = ax→x′), assuming a discrete set of attacks

• Approximation through simulation of K samples
(
Uk
A(yC,+, a), P

A,k
a(x)

)
from random

utilities and probabilities

⇒ A∗
k(x,+) = argmaxa

([
Uk
A(+,+, a)− Uk

A(−,+, a)
]
PA,k
a(x) + Uk

A(−,+, a)
)

• Estimation: p̂C(ax→x′ |x,+) = #{A∗
k(x,+) = ax→x′}/K
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RANDOM UTILITY

• Random utility UA(yC,+, a) includes two components

– A’s gain from C ’s decision

– random cost B of implementing an attack

• YyCy: gain when C decides yC with y actual label

• −Y++ ∼ Ga(α1, β1) with expected gain α1/β1 = −d for A and variance α1/β2
1

• Y−+ ∼ Ga(α2, β2) with expected gain α2/β2 = e for A, and variance α2/β2
2

• Y+− = Y−− = δ0, Dirac at 0: no gain for A from innocent instances

• ⇒ A’s gain (YyCy −B)

• If A risk prone ⇒ UA(yC, y, a) = exp(ρ (YyCy − B)) with random risk proneness
coefficient ρ ∼ U [a1, a2], a1 > 0
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RANDOM PROBABILITY

• PA
a(x), A’s (random) expected probability that C classifies as malicious for x′ = a(x)

• C guesses A’s beliefs about C ’s classification when observing x′ ⇒ delicate

• Hierarchy of decisions: A should know what C does when knowing what A does ...

• Probabilities to be specified at each stage until no more available information
⇒ non-informative distribution at that stage

• Heuristic at first stage based on PrC(c(x′) = +|x′) = r (C classifies as malicious
observing x′), with some uncertainty around it
⇒ PA

a(x) ∼ βe(δ1, δ2), with mean δ1/(δ1 + δ2) = r and adequate variance

• In general, given observed x′, consider all instances leading to it

– p1: proportion of instances originally malicious

– p2: proportion of instance originally innocent

– ⇒ r = p1/(p1 + p2)
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SPAM DETECTION

• m emails as bag-of-words: binary features about presence (1) or not (0) of n words

• Label indicates whether the message is spam (+) or not (−)

• Email as n-dimensional vector x = (x1, x2, .., xn) of 0’s or 1’s, with label y

• Only word insertion attacks ⇒ 0’s replaced by 1’s

• Interest in insertion of one word at most

• I(x): set of indices s.t. xi = 0 in x ⇒ A(x) = {a0, ai;∀i ∈ I(x)} set of possible
attacks with identity a0 and ai transforming i-th 0 into 1

• J(x′): set of indices with value 1 in x′ received by C ⇒ X ′ = {x′, x′j;∀j ∈ J(x′)}
and x′j message potentially leading to x′, with j-th 1 in x′ replaced with 0
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SPAM DETECTION
• uC(yC, y) standard

• pC(y) and pC(x|y) standard if considering only exploratory attacks and using a gen-
erative classifier (i.e. based on a generative model pC(x, y)) to estimate them

• Strategic component for pC(ax→x′|x, y) and use of ARA to approximate it

• Adversary’s random utilities obtained as before

• Beta distribution for PA
a(x) with adequate variance and mean ra

– q0 = pC(x′|−)pC(−): original label − left unchanged by A

– qj = pC(x′j|+)pC(+),∀j ∈ J(x′): original label + changed by A

– qn+1 = pC(x′|+)pC(+): original label + left unchanged by A

– ra =

∑
i∈J[a(x)] qi + qn+1

q0 +
∑

i∈J[a(x)] qi + qn+1
, i.e. mean set equal to C ’s own probability of

classifying malicious for x′ = a(x)

– PA
a(x): A’s (random) expected probability ofC classifying malicious for x′ = a(x)
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SPAM DETECTION
• Spambase Data Set from UCI Machine Learning repository

– 4601 emails, out of which 1813 are spam

– 54 relevant words for each email ⇒ 54 dimensional vector x of 0’s and 1’s

– data randomly split into training (75%) and test (25%) sets, with 100 repetitions

• Training not affected by attacks ⇒ p̂C(y) and p̂C(x|y) from Naive Bayes classifier

• Simulations (sample size 1000) with 4 utilities for C and different variances for ran-
dom expected probability PA

a(x) (increasing percentages k of maximum value)

• Comparison between ACRA and Naive Bayes: accuracy, utility, false positive (FPR)
and false negative rates

• ACRA more robust w.r.t. attacks, identifying more attacked spam emails, even for
larger k, i.e. variance, worsening the performance

• ACRA ⇒ lower FPR, i.e. less non-spam are rejected as spam (more important than
accepting spam)
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SPAM DETECTION
• Checking utility robustness through 4 utilities for C:

– 0/1 Utility ⇒ 1 if correctly classified and 0 o.w.

– Three utilities taking values

∗ 1 if correctly classified

∗ -1 for spam classified as legit

∗ −2/− 5/− 10 for legit classified as spam

• Random utilities for A (m=mean, v=variance)

– −UA(+,+, a) ∼ Ga(2500,0.002) ⇒ m = 5, v = 0.01

– UA(−,+, a) ∼ Ga(2500,0.002) ⇒ m = 5, v = 0.01

– UA(−,−, a) = UA(+,−, a) = δ0

• Random cost B = d(a) · α, with d(a) = # word changes and α ∼ U [0.4,0.6]

• Random risk proneness coefficient ρ ∼ U [0.4,0.6]
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SPAM DETECTION

• Beta distribution for PA
a(x) with mean r = PrC(c(a(x)) = +|a(x))

– Concave to avoid malicious a(x) concentrated around 0 or 1

– ⇒ variance ≤ ∆ = min
{
[r2(1− r)]/(1 + r), [r(1− r)2]/(2− r)

}

– Adjustable variance at k∆ with k ∈ {0.01,0.1,0.2, · · · ,0.9}

• K = 1000 Monte Carlo sample size
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SPAM DETECTION

• Starting problem for C: find c(x′) = argmaxyC
∑

y∈{+,−} uC(yC, y)pC(y|x′)

• 0/1 utility function, i.e. 1 for correctly classified instance and 0 otherwise

• Naive Bayes: NB-Plain for original data and NB-Tainted for attacked data

• k: percentage of maximum variance for PA
a(x)
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SPAM DETECTION

• Naive Bayes: NB-Plain and NB-Tainted behave similarly since A is not modifying
innocent instances

• Increasing k (and variance for PA
a(x)) ⇒ increases FPR

• Reducing FPR crucial in spam detection, as filtering out a non-spam is worse than
letting spam reach the user
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DISCUSSION ABOUT ACRA

• So far ACRA tested with A’s distributions centered around the expected values of
C ’s, but it proves quite robust even when moving away

• Changing all words in the spam detection problem ⇒ 2n possible attacks

– Ad hoc procedure, e.g., changing only one word and from 0 to 1

– Smaller sample size

– Approximations, parallelisation

• Further extensions

– From binary classification to multi-label (e.g. malware: trojan, adware, virus)

– From exploratory to poisoning attacks, i.e. attacks also during training

– Attacks not only on malicious instances but also on innocent ones

– From generative classifiers (P (X,Y )) to discriminative ones (P (Y |X = x))
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DISCRIMINATIVE CLASSIFIERS
• In the earlier approach (generative classifier) we supposed to know p(y) and p(x|y),

e.g. from a classifier applied to the training set

• Here we suppose to know only p(y|x) and address the problem of classifying an
instance when x′ is observed ⇒ solve argmaxyC ψ(yC) where

ψ(yC) =

∫

Xx′




k∑

y=1

u(yC, y)p(y|x = a−1(x′)


 p(x|x′)dx

=
k∑

y=1

u(yC, y)

[∫

Xx′

p(y|x = a−1(x′))p(x|x′)dx
]

• p(y|x) is based on untainted x

• Xx′, the set of reasonable instances x leading to x′ if attacked

• Optimisation solved via Monte Carlo using sample {xn}Nn=1 from p(x|x′) but ...

• ... there is a problem: we do not know p(x|x′) and we have to estimate it
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AB-ACRA
• Suppose p(x) unknown and p(x′|x) known as result of strategic thinking, as before,

about the possible attacks

• Efficient approach to sample from p(x|x′) making use of samples from p(x′|x)
• Sample from p(x|x′) ∝ p(x′|x)p(x) for x and x′ discrete

– Proposal x̃ from transition distribution q(x→ x̃)

– Sampled x̃′ ∼ p(X ′|X = x̃)

– ⇒ accept x̃ if x̃′ = x′ with probability α = min
{
1, p(x̃)q(x̃→xi)

p(xi)q(xi→x̃)

}

– Very slow convergence

• Sample from p(x|x′) for x and x′ continuous
– x̃ and x̃′ generated as above

– Based on Approximate Bayesian Computation (ABC) techniques, accept x̃ if
ϕ(x̃′, x′) < ϵ for a given distance ϕ and tolerance ϵ

– For high dimensions, use summary statistics s to accept x̃ if ϕ(s(x̃′), s(x′)) < ϵ
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ROBUSTIFYING DURING TRAINING

• p(y|x, β): model for instances y given covariates x and parameter β

• Training data D =
{
(xi, yi)Ni=1

}
and prior p(β)

⇒ posterior p(β|D) and predictive p(y|x,D)

• Using 0− 1 utilities ⇒ argmaxyC
∫∫

p(yC|x, β)p(x|x′)p(β|D)dx dβ

• Given a sample x, adversarial perturbation x′ ∼ p(x′|x) and adequate objective
function L(β, x, y) (mathematical details and conditions skipped)
⇒

– p(y, x|β) ≈ p(y, x′|β), i.e. x and x′ affect y similarly

– p(y|x, β) ≈ p(y|x′, β) ⇒ argmaxyC
∫∫

p(yC|x′, β)p(x′|x)p(β|D)dx′dβ

– p(x|β) ≈ p(x′|β) ⇒ argmaxyC
∫∫

p(yC|x′, β)p(β|D)dβ
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ROBUSTIFYING DURING TRAINING

Classifier Attacked (Raw)
Attacker A

Attacked (CK)
Attacker A

Attacked (AB-ACRA)
Attacker A

Logistic Regression 0.315± 0.007 0.499± 0.008 0.513± 0.008
Naive Bayes 0.325± 0.007 0.645± 0.025 0.665± 0.024

Neural Network 0.389± 0.024 0.592± 0.032 0.638± 0.030
Random Forest 0.313± 0.009 0.720± 0.013 0.710± 0.017

Classifier Attacked (Raw)
Attacker B

Attacked (CK)
Attacker B

Attacked (AB-ACRA)
Attacker B

Logistic Regression 0.412± 0.004 0.713± 0.008 0.760± 0.011
Naive Bayes 0.406± 0.008 0.783± 0.039 0.800± 0.035

Neural Network 0.437± 0.014 0.727± 0.050 0.725± 0.052
Random Forest 0.402± 0.005 0.779± 0.011 0.782± 0.008

• Accuracy comparison (with precision) of four classifiers on attacked data with no
defense, CK (Common Knowledge) defense and AB-ACRA defense
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CONCLUSIONS ABOUT ACRA

• Here more emphasis on modelling and conceptual aspects while the paper contains
many details about algorithmic ones, especially about scalability

• Like in ABC, the choice of summary statistics in AB-ACRA might be critical

• Adaptive attackers can be dealt with changing random probability and random utility
accordingly

• Here we have considered attacks to i.i.d. sequences but data could come, say, from
an autoregressive model
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ADVERSARIAL SOFTWARE TESTING

• Software subject to (possibly expensive and dangerous) failures in programming or
system design

• ⇒ software must undergo rigorous testing, both during development and operation,
to verify its reliability

• Optimal policies for software release ⇒ important issue in software engineering

• Challenges due to several, often uncertain, complicating factors

• Endogenous factors

– number of bugs in the software

– skill in detecting bugs

• Exogenous factors

– release decisions made by competitors

– eventual purchasing decision by software buyers
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ADVERSARIAL SOFTWARE TESTING

• Monetary aspects

– costs related to time on test

– costs related to bugs discovering and their fixing during testing

– costs related to bugs discovering and their fixing after the release

– monetary gain for the software sale

• Reputational aspects

• Early software release ⇒ larger commercial advantage over competitors

• Less intensely tested software ⇒ possible lower quality ⇒ potential advantage to
competitors
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ADVERSARIAL SOFTWARE TESTING

• Singpurwalla and Wilson (2012): Review of software reliability and testing

• Anand, Singh, Das (2015): evaluation of two types (simple and serious) failures in
successive versions of a software, during testing and operational phases

• Wilson and O’Riordain (2018): optimal release policy of new versions of Mozilla
Firefox based on bug detection data

• Saraf and Iqbal (2019): software reliability model based on NHPP, performing fault
detection, observation and correction in two stages and multiple versions

• Mishra, Kapur, Srivastava (2018): reliability growth of software over multiple versions

• Kenett, Ruggeri, Faltin (2018): thorough review of analytic methods in systems and
software testing

• Ay, Landon, Ruggeri, Soyer (2022): software testing with possible introduction of
bugs
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ADVERSARIAL SOFTWARE TESTING

• Ruggeri, Soyer (2018): overview of games and decision models for software testing

• Forman, Singpurwalla (1977, 1979) and Okumoto, Goel (1979): introduction of
stopping time models to support software release decisions

• Dalal, Mallows (1988): pioneer work on decision theoretic models for release

• Morali, Soyer (2003): sequential Bayesian decision theoretic setup for developing
optimal stopping policies for software testing

• Zeephongsekul, Chiera (1995): first game theoretic approach looking for optimal
release policies through Nash equilibrium

– Dohi, Teraoka, Osaki (2000): different approach since previous solution
restricted to particular case and computationally intractable

– Saito, Dohi (2022): uncovered faults in the earlier two papers showing the
existence of Nash equilibrium under some parametric conditions
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ADVERSARIAL SOFTWARE TESTING

• Overview of Zeephongsekul and Chiera (1995)

• First work to consider also actions and costs of a competitor

• Two competitors (i = 1,2) produce software performing the same set of tasks and
with life cycle length non exceeding T

• Competitor i, i = 1,2, decides to release the software at any time t in [0, T ] and
sells the product with probability Ai(t) to the only buyer (who buys from one
competitor at most)

• Ai(t), i = 1,2, continuously differentiable, concave and s.t. Ai(0) = Ai(T ) = 0
with a unique maximum at time ηi

– Choice of Ai(t) not only for mathematical convenience but also justified by
actual behaviour

– Success probability expected to be close to 0 both at the beginning and the end
of the life cycle [0, T ], because of initial poor reliability and final obsolescence,
respectively
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ADVERSARIAL SOFTWARE TESTING

• Introduction of expected cost function ci(t) incurred by player i in releasing the
software at time t

• ci(t) = c1it+ c2im(t) + c3i (m(T )−m(t))

– c1i cost of testing per unit time

– c2i cost of removing a fault during testing

– c3i cost of removing a fault during operation, with c3i > c2i since fixing an error
is more expensive after release than before it

– m(t) expected number of faults detected up to time t

– increasing, concave and differentiable m(t), with m(0) = 0

• ⇒ ci(t) convex function with minimum at γi s.t. ⇒ m
′

i(γi) =
ci1

(c3i − c2i)

• T is sufficiently large so that γi < T
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ADVERSARIAL SOFTWARE TESTING

• pi > 0: selling price of the software produced by player i

• If player 1 releases software at time x and player 2 at time y ⇒ Mi(x, y) is the
expected unit profit to player i, with

M1(x, y) =

{
p1A1(x)− c1(x) 0 ≤ x < y ≤ T

p1(1−A2(y))A1(x)− c1(x) 0 ≤ y < x ≤ T

• M2(x, y) can be described similarly and M1(x, y) ̸=M2(x, y) in general

• ⇒ optimal release policies among Nash equilibrium points in this non-zero sum
game (with concerns about the results as mentioned earlier)

• The paper, and all game theoretic work in the field, entails common knowledge as-
sumptions, debatable in competitive business settings as in software development

• ⇒ Adversarial Risk Analysis ⇒ Adversarial Software Testing
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ADVERSARIAL SOFTWARE TESTING

• Support for producer X against competitor Y , trying both to sell software to buyer Z
(purchasing from one producer at most)

• X can release the software at any time x ∈ [0, T ]

• In absence of competitors, X would succeed in selling the product at the price pX
with probability AX(x), with AX(0) = AX(T ) = 0 (less restrictive than before)

• Y releases at time y ∈ [0, T ] independently, succeeding to sell at fixed price pY with
probability AY (y), with similar properties as AX

• Consider a stochastic number NX(t) of faults found until time t, instead of the
expected number mX(t) = E[NX(t)]

• NX(t) NHPP with intensity λX(t) and mean value function mX(t) =

∫ t

0
λX(u)du

• Similar definitions apply to Y
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ADVERSARIAL SOFTWARE TESTING
Tri-agent influence diagram representing the basic problem
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• Global perspective

• Different colours for different agents

• Square nodes: Decisions by producers (X and Y ) and buyer (Z)

• Circle nodes: Uncertain features of X (ΘX) and Y (ΘY ), like number of bugs

• Hexagonal nodes: Utilities UX, UY , UZ for X,Y, Z
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ADVERSARIAL SOFTWARE TESTING
Tri-agent influence diagram representing the basic problem
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• Perspective from producer X, the one we are taking in the work

• Y ’s decision now as a circle since it is uncertain for X
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ADVERSARIAL SOFTWARE TESTING

• cX(t) = c1Xt+ c2XNX(t) + c3X [NX(T )−NX(t)]

– c1i cost of testing per unit time

– c2i cost of removing a fault during testing

– c3i > c2i cost of removing a fault during operation

• We assume that no new bugs are introduced during the debugging phase

• We assume that fault arrivals can be described by the same process during
debugging and operational phase after the software has been released

• There are other assumptions leading to further developments, e.g., price fixed in
advance, only two producers, only one buyer, fixed purchase probability
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ADVERSARIAL SOFTWARE TESTING

• X and Y release their software at times x and y, respectively (x ̸= y a.s.)

• X stops testing if the buyer does not purchase its software, either because it rejects
the product or because it has already bought it from Y

• gX(x, y) (random) gain of producer X given such release times

• Start with x < y and rename gX as gX1

• ⇒ gX1(x, y) = AX(x) [pX − cX(x)]− [1−AX(x)] [c1X x+ c2XNX(x)]

• First term: expected gain if Z buys X ’s software given by purchase probability at
time x times the difference between selling price and costs due to debugging until x
and fault removals after the release up to time T

• Second term: expected loss due to refusal by Z and costs incurred until release time

• Note that gX1(x, y) does not depend on y
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ADVERSARIAL SOFTWARE TESTING

• Similarly, Y ’s gain, for y < x, not dependent on x:

• gY 1(x, y) = AY (y) [pY − cY (y)]− [1−AY (y)] [c1Y y+ c2YNY (y)]

• When x > y, the X ’s gain is renamed as gX2

gX2(x, y) = −AY (y) [c1Xy+ c2XNX(y)] + [1−AY (y)] {AX(x) [pX − cX(x)]−
− [1−AX(x)] [c1Xx+ c2XNX(x)]}

• First term: Z buys Y ’s software and X stops debugging its own

• Second and third term: like earlier, but after Z ’s refusal of buying Y ’s software

• Similar result for Y when y > x
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ADVERSARIAL SOFTWARE TESTING

• Assuming risk neutrality ⇒ expected gain hX(x, y) replacing NX(t) with its
expectation, like for x < y

hX1(x, y) = AX(x) [pX − (c1Xx+ c2XmX(x) + c3X [mX(T )−mX(x)])]
− [1−AX(x)] [c1Xx+ c2XmX(x)]

• As an anticipation of what is next, X can also consider AY (y) as random and
compute its expectation when x > y

hX2(x, y) = −E(AY (y))[c1Xy+ c2XmX(y)] + (1− E(AY (y)))×

×[[AX(x)[pX − (c1Xx+ c2XmX(x) + c3X[mX(T )−mX(x)]]− [1−AX(x)]×
×[c1Xx+ c2XmX(x)]]]

• Similar results apply to Y
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ADVERSARIAL SOFTWARE TESTING

• πXY (y): density modelling X ’s beliefs about Y ’s release decision being time y

• Expected gain associated with release decision x
MX(x) =

∫
hX(x, y)πXY (y)dy =

∫ x
0 hX2(x, y)πXY (y)dy+

∫ T
x
hX1(x, y)πXY (y)dy

• Optimal release time for X: x∗ = argmax0≤x≤T MX(x)

• Above arguments slightly modified in absence of risk neutrality, i.e., when consider-
ing a utility function uX

gX1(x, y) = AX(x)×uX(pX−cX(x))+[1−AX(x)]×uX(−(c1X(x)+c2XNX(x)))

gX2(x, y) = AY (y)× uX(− [c1Xy+ c2XNX(y)]) + [1−AY (y)]×
×{AX(x)uX([pX − cX(x)]) + [1−AX(x)]uX(− [c1Xx+ c2XNX(x)])}
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ADVERSARIAL SOFTWARE TESTING

• All the elements introduced above are standard in the decision analysis and software
reliability literature and practice, except for those entailing strategic thinking:

– AY (y) (purchase probability of Y ’s software)

– πXY (y) (X ’s beliefs about Y releasing its product at time y)

• Need for procedures to facilitate their assessment, starting with πXY (y)

• Look at Y ’s perspective on product release

• Remember that Y has a cost function cY (t) and a purchase probability function
AY (t) for a fixed price pY , with similar properties and definitions than those of X

• Presenting now an approach to obtain an estimate π̂XY (t) of πXY (t) reflecting upon
the optimisation problem faced by Y

117



ADVERSARIAL SOFTWARE TESTING

• Suppose X has complete knowledge about Y ’s behaviour, i.e., c1Y , c2Y , c3Y , pY ,
λY (t), AY (t) and πYX(t) (which models Y ’s beliefs about X ’s release time)

• ⇒ X could guess Y ’s actual optimal release time y∗, using the previous
computations by interchanging X and Y

• But we have uncertainty about Y ’s elements so that we

– model such uncertainty through probability measures ΠY
X(t), C1Y , C2Y , C3Y ,

PY , AY and NY (t) over the space of suitable densities πYX(t), constants c1Y ,
c2Y , c3Y , pY , functions AY and processes NY (t), respectively

– make a sufficiently large number of draws from these components, compute the
corresponding optimal release time y∗ for each draw, and estimate an empirical
distribution over y∗, which will be considered as the estimate π̂XY (y)

– ⇒ X will be able to compute its optimal release time x∗
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ADVERSARIAL SOFTWARE TESTING

• The random ingredients could be specified gathering all information available and
modelling with standard expert judgement

• Here we consider several heuristics based on adding some uncertainty to the
judgements concerning X

• Y ’s random beliefs about X ’s decision ΠY
X(t)

– Transform the time interval [0, T ] into the unit interval via the transformation
t→ t/T , 0 ≤ t ≤ T

– Consider suitable densities πYX(t) in the space of all beta densities over [0,1]
or a proper subset, if X feels capable of adding some constraints about their
parameters, e.g. by fixing lower and/or upper bounds over mean and/or variance
of the beta distributions

– Randomly generate densities from such class, e.g., drawing a uniform
distribution over both parameters of the beta distribution or its mean-variance
pair
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ADVERSARIAL SOFTWARE TESTING

• Y ’s random beliefs about X ’s decision ΠY
X(t)

– Use distortion function as in Arias-Nicolas, Ruggeri and Suárez-Llorens (2016)

– Start from an absolutely continuous (for simplicity) pdf πX(t) and its cdf ΠX(t),
expressing X ’s opinion on Y ’s release time and build a random space of cdf’s
πYX(t) around it

– Consider distortion functions h(t), i.e. non-decreasing functions such that
h : [0,1] → [0,1], h(0) = 0, h(1) = 1

– Apply h(·) to ΠX(t) and obtain random pdf’s ΠY
hX(t) = h(ΠX(t)) and cdf’s

πYhX(t) = h
′
(ΠX(t))πX(t)

– Consider a band around ΠX(t) taking one convex and one concave distortion
function to get, respectively, its lower and upper bounds

– A useful choice for a distortion function is h(t) = tα, which is convex for
0 < α < 1 and concave for α > 1

– Randomness is induced by, say, considering that α follows a uniform distribution
on a certain interval
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ADVERSARIAL SOFTWARE TESTING
• Uncertainty about Y ’s costs

– Model X ’s uncertainty about c1Y , c2Y and c3Y considering independent
(Gaussian) distributions centered around the corresponding values c1X, c2X, c3X

– Alternatively, if X can provide upper and lower bounds for c1Y , c2Y and
dY = c3Y −c2Y , then independent shifted beta distributions could be considered

– The variances of those distributions will be determined by X depending on the
confidence about the chosen means

• Uncertainty about Y ’s price PY

– In absence of further information consider a (Gaussian) distribution with mean
pX and variance σ2 denoting the degree of uncertainty around pX

• Uncertainty about Y ’s purchase probability AY (y)

– Transform AX(x) → a [AX(x)]
b, with a ∈ [0,1] (decreasing effect) and

b ∈ [0,1] (increasing effect)

– a and b randomly generated to obtain values of AY (y)
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ADVERSARIAL SOFTWARE TESTING

• Uncertainty about Y ’s fault discovery process NY (t)

– Suppose X has chosen a functional form for NX(t) and estimated its
parameters and obtained an estimate m̃X(t) for its mean value function

– First alternative: generate values of the parameters of NY (t) from distributions
centered around X ’s estimated parameters (e.g. posterior distributions)

– Second alternative: Bayesian non-parametric approach with mean value
function as a random measure M , generated by a Gamma process, conjugate
w.r.t. the Poisson process (Lo, 1982)

– Gamma process centered around m̃X(t) so that at each interval [t0, t1] the
mean value function is generated by a Gamma distribution with mean
m̃X(t1)− m̃X(t0)

– The variance of the Gamma distribution could determine how close the fault
discovery process NY (t) is to NX(t)

– Further details can be found in Cavallo and Ruggeri (2001)
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Example based on Zeephongsekul and Chiera (1995)

• Life cycle length T = 2000 days

• Cost parameters: c1X = 0.5, c2X = 1, c3X = 5

• Selling price pX = 5000

• Purchase probability AX(t) = 0.0002t(10− 0.005t)

• Fault discovery process NX(t): NHPP with mean value function mX(t) = atc

(power law process) and MLEs of parameters given by â = 0.256 and ĉ = 0.837,
from Zeephongsekul and Chiera (1995) and based on data from Okumoto (1979)

• Cost function with utility function uX assumed to be the identity (⇒ Risk neutrality)
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Cost parameters follow distributions centered around the cX values:

– c1Y ∼ N(0.5,0.02) = N(c1X,0.02)

– c2Y ∼ N(1,0.05) = N(c2X,0.05)

– c3Y ∼ N(5,0.5) = N(c3X,0.5)

• Selling price pY ∼ N(5000,250) = N(pX,250)

• Random purchase probability AY (t) ∼ d̃AX(t)b̃, with d̃ ∼ U(0,1) and b̃ ∼ U(0,1)

• The random fault discovery process NY (t) is a NHPP with random mean value
function mY (t) = ãtc̃ with ã ∼ N(0.256,0.05) and c̃ ∼ N(0.837,0.05)

• Beliefs of Y over X ’s release time t given by t/T ∼ βe(α, α), with α ∼ U(1,3)

• Y ’s random cost function cY (t) = c1Y t+ c2YNY (t) + c3Y [NY (T )−NY (t)]

• Deterministic utility function UY : identity ⇒ risk neutrality
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Forecasting Y ’s release decision

– Maximise the objective function MY (y) =
∫
hY (x, y)πYX(x)dx

– For i = 1, ...,K

∗ Sample c1Y , c2Y , c3Y , pY , AY , NY , α (for πYX , i.e. Y ’s beliefs on X ’s release)

∗ Given the sampled αi
· generate a sample zj ∼ βe(αi, αi), j = 1, ..., N

· get xj = zj × T , j = 1, ..., N

∗ Monte Carlo approximation M i
Y (y) through

1
N

∑N
j=1 hY (xj, y) = 1

N
[
∑

xj<y
hY 2(xj, y) +

∑
y<xj

hY 1(xj, y)] = (omitted)

∗ ⇒ find y∗i = argmax0≤x≤T M i
Y (y)

– ⇒ Get approximate df Π̂X
Y (y) = card{y∗i : y∗i ≤ y}/K
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Deciding X ’s optimal release

– Find x∗ = argmax0≤x≤T MX(x)

– Maximise the objective function MX(x) =
∫
hX(x, y)πXY (y)dy

– Approximate df Π̂X
Y (y) = card{y∗i : y∗i ≤ y}/K

– Monte Carlo approximation through
1
K

∑K
i=1 hX(x, y

∗
i ) = 1

K
[
∑

y∗
i≤x hX2(x, y∗i ) +

∑
y∗
i≥x hX1(x, y∗i )] = (omitted)
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• βe(α, α) distribution (mean 0.5) on X ’s release ⇒ guess 1000 = 0.5 ∗ 2000

• LEFT: Y ’s optimal release time up to 800 days (out of 2000) with some incentive to
very early release but the optimal ones are between 300 and 700

• RIGHT: bimodality in X ’s optimal release, with two possible strategies, one before
Y ’s release and one after it

• X ’s optimal release occurs on day 483 for an expected gain of 2,442
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• X thinks that Y thinks that X will release later
⇒ βe(α, α) onX ’s release replaced with βe(3α, α) ⇒ guess 1,500 = 0.75∗2000

• LEFT: Y ’s optimal release up to 1200 days with some incentive to very early release
and optimal ones between 700 and 900 (compare with 300 and 700)

• RIGHT: X ’s optimal release is before Y ’s one

• X ’s optimal release on day 663 for an expected gain of 3,091 (earlier 483 and 2,442)
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• X thinks that Y thinks that X will release earlier
⇒ βe(α, α) on X ’s release replaced with βe(α,3α) ⇒ guess 500 = 0.25 ∗ 2000

• LEFT: Y ’s optimal release up to 800 days with some incentive to very early release
and high-risk early release between 200 and 500 (earlier 300 & 700 and 700 & 900)

• RIGHT: X ’s optimal release is well after the Y ’s high-risk one

• X ’s optimal release on day 978 with expected gain of 2,619 (earlier 483 & 2,442 and
663 & 3,091)
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ADVERSARIAL SOFTWARE TESTING: EXAMPLE

• Risk averse X ⇒ identity utility replaced with constant absolute risk averse (CARA)
model given by u(x) = 1− exp(−ρx), with risk aversion parameter ρ = 0.001

• LEFT: Y ’s optimal release between 300 and 700 unchanged w.r.t. the first plot

• RIGHT: Still bimodal distribution for X ’s optimal release, but tendency to be more
conservative and wait more

• X ’s optimal release on day 1003 (483 under identity) with expected utility (no more
gain!) of 0.48
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AST: CURRENT WORK

• Multiple producers

– Instead of x < y and x > y, consider order statistics and position X ’s release
time between x(i−1) and x(i+1) for all i’s

– Similar formulas w.r.t. previous ones

• Multiple decision variables

– So far theAX purchase probability has been considered only as a function of the
release time but it should depend also on other variables, like price and quality
of the software

• Multiple buyers
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