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Leading causes of death

Year 2002. Data from University of Melbourne, http://www.doherty.unimelb.edu.au/study.html
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Infectious diseases: north–south gap

Disability-adjusted life year (DALY), a measure of overall disease burden, expressed as the number of years lost due to ill-health,

disability or early death. World Health Organization, Department of Measurement and Health Information. February 2009.
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Vertically transmitted diseases, HBV

Centers for Disease Control’s (CDC) presentation entitled: Epidemiology and Prevention of Viral Hepatitis A to E: An Overview.

Taken from: Texas Department of State Health http://www.dshs.state.tx.us
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OUTLINE

• Horizontally and Vertically transmitted diseases

• Mathematical disease control

• Applications to real scenarios

• Periodically varying contact rate
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Disease transmission

Horizontally transmitted diseases: contacts with infectious hosts, which may
be a direct physical contact or an indirect one, through e.g. biting insects.

Vertically transmitted diseases: transfer from parent to offspring. For example,
an infectious mother may transmit the disease to her fetus by means of bodily
fluid or breast milk. Some diseases that can be vertically transmitted include
hepatitis B, herpes simplex, syphilis, rubella (german measles), Chagas disease
(american trypanosomiasis) and HIV-AIDS.

Some mathematical literature:
Busenberg, Cooke. Biomath., 23. Springer (1993)

Li, Smith, Wang. SIAM J. Math. Anal., 62 (2001)

d’Onofrio. Appl. Math. Comput., 18 (2005)

Li, Zhou. Chaos Sol. Frac., 40 (2009)
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Mathematical disease control: two possible approaches

1. Qualitative analysis of models:
Existence of equilibria and/or periodic orbits; local and global stability analysis;
Forward and backward bifurcations.

Goal: Find the individual role of the parameters. Act on parameters (when
possible) in order to control the disease (when possible, try to eradicate it).
Typical example: Basic reproduction number R0.

Literature:
Anderson, May. Oxford Uni. Press (1991)

Capasso. Lect. Notes Biomathematics (1993)

Brauer, van den Driessche, Wu. Lect. Notes Math. (2008)
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Qualitative bifurcation diagrams for the forward (a) and backward (b) bifurcations respectively. The bifurcation

parameter is the basic reproductive number R0. The solid lines (-) denotes stability; the dashed line (–) denotes

instability.
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Mathematical disease control: two possible approaches

2. Optimal control:
Define a strategy and control the system to produce the best outcome.

Goal: Make decisions involving complex biological situations.

Literature:
Morton, Wickwire. Adv. Appl. Prob., 6 (1974)

Behncke. Optim. Control Appl. Meth., 21 (2000)

Lenhart, Workman. Chapman & Hall/CRC (2007)

Anita, Arnautu, Capasso. Birkaüser (2010)

Blayneh, Lenhart et al., Bull. Math. Biol., 72 (2010)

Hansen, Day. J. Math. Biol, 62 (2011)
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OUR AIM TODAY

Use both qualitative analysis and optimal control theory to assess the control
of a large class of diseases, i. e. the deseases which transmit both horizontally
and vertically.

Literature on the mathematical model:

Li, Smith, Wang. SIAM J. Math. Anal., 62 (2001): Original model. Bilinear
incidence rate.

Li, Wang. IMA Math. Appl., 126 (2002): Add vaccination as control measure

d’Onofrio. Appl. Math. Comput., 140 (2003): Periodic contact rates
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THE MODEL

Ṡ = bS + bR + b(1− p)E + b(1− q)I − bS − β(t)SI − rS
Ė = b(pE + qφ1I) + β(t)SI − (e + b)E

İ = bqφ2I + eE − (g + b)I

Ṙ = rS + gI − bR.

Main assumptions:
• The general form of the contact rate (CR) is time-dependent, β(t);

• The natural birth rate and death rate are assumed to be equal, and denoted by b;

• It is assumed that a fraction of the offsprings of latent and infectious individuals are latent at birth. There is

also the possibility that an offspring of a infectious individual may born straight infectious. p is the probability

that an offspring of a latent individual has to be born latent, (qφ1) and (qφ2) are the probabilities that

an offspring of a infectious individual has to be born latent or infectious, respectively, where φ1 + φ2 = 1,

φ1, φ2 ≥ 0, p, q ∈ [0, 1].

Vertical transmission: pE → E; qφ1I → E; qφ2I → I .
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Dynamical behaviour results

Suppose β is a periodic function of period ω: β(t + ω) = β(t). The model
admits the disease free equilibrium

E0 = (b0, 0, 0) , b0 = b/(b + r)

Theorem 1 E0 is LAS if the maximum modulus of the Floquet’s eigenvalues
of the following periodically varying linear system:

 y
′
1

y′2

 =

 −(a + b(1− p)) bqφ1 + b0β(t)
a −(b(1− qφ2) + g)


 y1
y2



is strictly less than one. This condition guarantees also that E0 is GAS in the
region:

Γ =
{
(S,E, I) ∈ R3

+ : 0 ≤ S ≤ b0; S + E + I ≤ 1
}

Proof: Linearize and use the properties of cooperative dynamical system (d’Onofrio,
Appl. Math. Comput., 2003).
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Dynamical behaviour for constant CR

Assume β(t) = k, r = 0, φ1 = 1, φ2 = 0. Introduce the basic reproductive
number :

R0 =
k e

(b + e)(b + g)− bp(b + g)− bqe
. (1)

The model admits the disease-free equilibrium P0 ≡ (1, 0, 0) on the boundary
of Γ, and an endemic equilibrium P ≡ (S,E, I) in the interior of Γ, where:

S =
1

R0
; I =

e b (R0 − 1)

(b + e)(b + g)R0
; E =

b(R0 − 1)

(b + e)R0
. (2)
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Dynamical behaviour for constant CR

Theorem 2 If R0 ≤ 1, then P0 is the only equilibrium and it is globally
stable in Γ. If R0 > 1, then P0 is unstable and there exists a unique endemic
equilibrium P , and it is globally stable in the interior of Γ.

Proof: The global stability result may be obtained using the geometric approach
to stability due to M. Li and J. Muldowney (SIAM J. Math. Anal., 1996). See:
Li, Smith, Wang, SIAM J. Math. Anal., 62 (2001)
Buonomo, Lacitignola, J. Math. Anal. Appl., 348 (2008).

Conclusion: The system undergoes a transcritical (forward) bifurcation at R0 =
1 (the R0-dogma, Reluga, Medlock, Perelson, J. Theor. Biol., 2008)
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Vaccination strategies

Goal. Minimize the total number of infectious individuals and the cost associ-
ated with vaccination during the vaccination campaign on [0, tf ].

Objective functional:

J(r) =
∫ tf
0

(
AI + r2(t)

)
dt,

where r(t) is a measurable function such that: 0 ≤ r(t) ≤ 0.9, for t ∈ [0, tf ].

Remarks
• A is a weight parameter describing the comparative importance of the two terms in the functional.

• We consider a quadratic cost on the control, which is the simplest and widest used nonlinear representation

of vaccination cost

See e.g. Asano et al., Math. Biosci. Engin., 5 (2008) Jung et al., Disc. Cont. Dyn. Sys. B, 2 (2002) Jung

et al., J. Theor. Biol., 260 (2009)
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Optimal control problem

Find 0 ≤ r(t) ≤ 0.9, for t ∈ [0, tf ], to minimize

J(r) =
∫ tf
0

(
AI + r2(t)

)
dt,

subject to

Ṡ = b− b(pE + qI)− bS − β(t)SI − rS
Ė = b(pE + qφ1I) + β(t)SI − (e + b)E

İ = bqφ2I + eE − (g + b)I

Ṅ = b− bN,

and
S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, N(0) = 1.
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Pontryagin’s maximum principle

It is a constrained control problem. Apply the Pontryagin’s maximum principle
(Pontryagin et al., 1962) and minimize pointwise the Hamiltonian:

H(S,E, I,N) = AI + r2 +
4∑
i=1

λi fi

The adjoint equations are:

λ̇i = −∂H
∂xi

; i = 1, . . . , 4

Here xi, i = 1, 2, 3, 4 are the state variables S, E, I and N , and fi are the right hand sides of the system.
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Optimality system

Adjoint equations:

λ̇1 = [b + r + β(t)I ] λ1 − β(t)I λ2;

λ̇2 = bp λ1 + (e + b− pb) λ2 − e λ3;
λ̇3 = −A + [bq + β(t)S] λ1 − [bqφ1 + β(t)S] λ2 + (g + b− bqφ2) λ3;
λ̇4 = b λ4.

Transversality equations:

λ1(tf) = λ2(tf) = λ3(tf) = λ4(tf) = 0. (3)

Characterization of the optimal control r∗:
∂H
∂r = 0, at r = r∗, on the set {t ∈ [0, tf ] : 0 ≤ r ≤ 0.9}. That is:

r∗ =



0 if S∗λ1 < 0
S∗λ1
2 if 0 ≤ S∗λ1 ≤ 1.8

0.9 if S∗λ1 > 1.8.
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Existence of the optimal control profile

Theorem 3 There exists an optimal control r∗(t) and the corresponding so-
lution, S∗(t), E∗(t), I∗(t), N ∗(t), and H∗, that solves the optimal control
problem. Furthermore, there exist adjoint functions λi(t), i = 1, 2, 3, 4, that
are solutions of the adjoint equations and transversality conditions.

The existence and the uniqueness of the optimal control, for small tf , is stan-
dard because the model is linear in the control variable and is bounded by a
linear system in the state variables (see, e.g., Fleming and Rishel, 1975). The
convexity of the objective functional in r on the closed, convex, control set Γ
ensures that it is a minimizing problem.
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Numerical settings

We use the so called forward - backward sweep method. The eight ordinary
differential equations consisting the optimality system are numerically solved
together with the control characterization.
The process begin with an initial guess on the control variable. Then, the
state equations are solved simultaneously forward in time, and next the adjoint
equations are simultaneously solved backward in time. The control is updated
by inserting the new values of states and adjoints into its characterization, and
the process is repeated until convergence occurs.
The solver used for the state and adjoint systems is a Runge-Kutta fourth order
procedure.

Literature:
Jung, Lenhart, Feng. DCDS-B, 4 (2002)

Lenhart, Workman. Chapman & Hall/CRC (2007)

Asano, Gross, Lenhart, Real. Math. Biosci. Eng., 5 (2008)

Blayneh, Lenhart et al., Bull. Math. Biol., 72 (2010)
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Epidemiological parameters: dynamics of rubella in China

In a recent paper, Gao and Hethcote (Math. Biosci., 2006) considered an
age structured model to evaluate the dynamics of rubella over time in China,
under various scenarios of vaccination or non-vaccination. We will estimate our
epidemiological parameters by using data from their paper (unless otherwise
stated). In this way we test our theoretical findings on the same case study in
China.

• Natural birth rate, b: 0.012
• Rate at which the exposed individuals become infectious, e: 36.5 per year.
• Rate at which the infectious individuals recover, g : 30.417 per year.
• Fractions p and q of the offspring from the exposed and infectious class that
are born into the exposed class: 0.65.
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Epidemiological parameters: dynamics of rubella in China

• Contact rate, β0: The average force of infection of rubella for people between
0 and 50 years is 0.196 per year, according to Gao and Hetchote’s data. Assume
d = 0, then the force of infection is modelled as a linear term β0I , where β0 is
the contact rate. Hence, at the endemic state it is:

β0
e b (R0 − 1)

(b + e)(b + σ)R0
= 0.196,

i.e.,

β0 = 0.196
(b + e)(b + g)

eb
+

[(b + e)(b + g)− bp(b + g)− bqe]
e

.

The values above for b, e, g, p, q, drive to β0 = 527.59 per individual per year
(and, consequently, R0 = 17.34).
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Convergence to endemic equilibrium

0.0576 0.0576 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577
3.7

3.705

3.71

3.715

3.72

3.725

3.73
x 10

−4

Susceptibles

In
fe

ct
io

us

Assuming no vaccination (r = 0) and constant contact rate (d = 0), the solutions converge to the endemic

state indipendently of initial data, in agreement with Theorem 1. Here the convergence is depicted in the

S − I plane. The equilibrium is a stable focus. The simulation is performed with φ1 = 1, φ2 = 0.
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Prediction of endemic state

According to WHO data statistics, the reported cases of rubella in China are
increasing in the last years. There were 24,015 reported cases in 2004, that
jumped to 74,746 in 2007 and 120,354 in 2008. According to our model, the
cases will increase until the endemic state will be reached, which corresponds
to I∗ ≈ 3.70 · 10−4, that is to say, taking into account of a total population
of 1.3 · 109 individuals, that 481,000 infected individuals are expected at the
endemic state.

In other words, in absence of vaccination the model predicts a strong increase
of total rubella cases in China, up to 225%.
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Controlling rubella in China
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The vaccination rate is at the highest possible value in the first stage of vaccination cam-
paign. Gaff and Schaefer (Math. Biosci. Eng., 2009) find a similar optimal vaccination policy for several
different epidemic model with SIR and SEIR structure. Vaccinate at the highest possible rate as early as
possible is essential for controlling an epidemic.
According to the optimal strategy, the infectious can be reduced up to 75% around the second year of
campaign. At the end of campaign, infectious and exposed both show an increasing trend, due to the
immission of new susceptibles. However they are more or less the half of those who were at the beginning.
This result can be helpful to plan periodic vaccination campaigns.
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The role of the weight parameter A
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Infectious (on the left) and Vaccination rate (on the right) versus time. The solid lines correspond to the case
A = 100, the dotted line to the case A = 30. The straight line in the left picture is the equilibrium solution.
By reducing the parameter A, we observe that the maximum vaccination rate shifts on the right in
the optimal control profile (right). Hence, if the vaccination cost is relatively high, a gradual increase
of the vaccination rate is suggested. Of course, higher is the priority of cost reduction, lower is the efficacy
of the campaign on disease burden (left).
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Seasonally varying contact rate

One-year period sinusoidal function:

β(t) = β0 (1 + d sin(2π t))

where β0 gives the mean contact rate, 0 ≤ d ≤ 1 represents the strenght of
the seasonal forcing, and t has units of years.

Epidemiological motivation: Several childhood diseases are driven by the sea-
sonally changing CR between children which increases sharply at the beginning
of each school year, and strongly controls the ensuing disease transmission
(Stone, Olinky, Huppert. Nature, 2007).
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Effect of the strenght of seasonal forcing, d
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The simulation runs for 10 time units with r = 0, φ1 = 1, φ2 = 0. The initial data are near to the endemic

equilibrium state that system admits for d = 0.
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Skip and peaks (Stone, Olinky, Huppert. Nature, 2007)

Skip: Susceptibles always continues to increase despite the fact that the infec-
tions pass through a maximum.
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There are two major epidemic outbreaks, from point A to B, and from point C to D, respectively. The two infectious peaks between

t = 1 and t = 3 do not produce a decrease of susceptibles, so that large - scale outbreaks do not take place (i.e. there are two

skips). The simulation runs for 4.5 time units with r = 0, φ1 = 1, φ2 = 0, d = 0.3.

Forecast about future outbreaks or skips may depend critically on the size of S
after a major outbreak.
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Controlling peaks
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On the left, d = 0.6. There is only one major epidemic outbreak, (a). The maximum vaccination effort is

concentrated at the beginning of the epidemic outbreak, (b), and this reduces the fraction of infectious, (c).

On the right, d = 0.4 and two large scale epidemics occur, (d). In this case the optimal policy is to

distribute the vaccination effort over time, (e). This allows to sensibly reduce the second infectious

peak (the outbreak is virtually avoided), (f).
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Conclusions

•We assess the effect of control strategies on a community affected by a disease
that transmits both horizontally and vertically.

• We apply the SEIR epidemic model with vertical transmission introduced by
Li, Smith, Wang (SIAM J. Math. Anal., 2001) to epidemic spread of rubella.
This system undergoes a forward bifurcation at R0 = 1. We perform an optimal
control approach and test our theoretical findings to simulate simple scenarios
for rubella vaccination strategies in China.
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Conclusions

• Gao and Hethcote (Math. Biosci., 2006) observed that an unsufficient vac-
cination campaign may drive the total congenital rubella syndrome (CRS) in-
cidence in China to be more than twice the current level. Furthermore, they
find that routine vaccination coverage of over 80% of 1-year old children may
sensibly reduce the CRS cases and eliminating rubella in fifty years. Moreover,
a mass vaccinations combined with routine vaccinations may help to accelerate
the eradication of rubella.
Taking into account that the percentage of 1-years old children in 2000 was
0.01, we can estimate that at least 10.4·106 vaccinations are needed to obtain
the eradication predicted by Gao and Hethcote.

Here, in the case A = 100, we get a maximum initial vaccination rate of
0.137 with a suceptibles endemic level of 0.05767, so that at least 10.27·106

vaccinations are estimated. These results are comparable with the ones obtained
by Gao and Hethcote.
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Conclusions

• In the case of periodically varying CR it is stressed the importance to predict
epidemic peaks. Maximum vaccination effort is concentrated at the beginning
of singular epidemic outbreak whereas the optimal policy is to distribute the
vaccination effort over time in case of predicted multiple outbreaks. This will
stop future major outbreaks.
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Some further directions

• Real data validation for the periodic CR;

• Age structure;

• Treatment (multiple controls);
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