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Introduction

Culling is the most common strategy to eradicate wildlife diseases
when vaccination is impossible or impractical

Aim: reduce the numbers of susceptible and/or infected animals
below the minimum threshold for disease persistence.
Possible strategies:

1 Reactive culling (Donnelly et al., Nature, 2006): intensified
hunting campaigns at the onset of the epidemics (bovine
tuberculosis in British badger, rabies in European fox and
Canadian raccoon)

2 Epidemic-transient phase culling (Schnyder et al., Veter. Rec.
2002): targeted hunting campaigns at the end of the first
epidemic peak (classic swine fever in Swiss wild boar)
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Research question

When is reactive culling the optimal strategy?

... and when is it better to wait?

⇒ Optimal control theory applied to a SIR Model
with the objective to minimize

both the number of infected animals
and the cost of culling effort

Maria Groppi, Valentina Tessoni, Luca Bolzoni, Giulio De Leo Optimal control of infectious diseases in wildlife



Research question

When is reactive culling the optimal strategy?

... and when is it better to wait?

⇒ Optimal control theory applied to a SIR Model
with the objective to minimize

both the number of infected animals
and the cost of culling effort

Maria Groppi, Valentina Tessoni, Luca Bolzoni, Giulio De Leo Optimal control of infectious diseases in wildlife



Research question

When is reactive culling the optimal strategy?

... and when is it better to wait?

⇒ Optimal control theory applied to a SIR Model
with the objective to minimize

both the number of infected animals
and the cost of culling effort

Maria Groppi, Valentina Tessoni, Luca Bolzoni, Giulio De Leo Optimal control of infectious diseases in wildlife



Mathematical model


Ṡ = r S

(
1 −

S + I + R
K

)
+ νR − βSI − c(t) S,

İ = βSI − (α+ µ+ η+ c(t)) I,

Ṙ = ηI − (µ+ c(t)) R

(1)

Initial conditions:

S(0) = K , I(0) = 1, R(0) = 0

Objective functional to minimize:

J(c) =

∫ T

0

(
I(t)γ + Pc(t)θ

)
dt , γ, θ ∈ {1, 2}

in the class of admissible control

U =
{
c(t) piecewise continuous | 0 ≤ c(t) ≤ cmax , ∀ t ∈ [0,T ]

}
(2)
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Pontryagin’s Maximum principle

- Existence of the optimal control follows from standard
existence results (Fleming and Rishel)

- The characterization of the optimal control is obtained using
the Pontryagin’s Maximum principle:
Given the problem

min
c∈U

J(c) = min
c∈U

∫ t1

t0
f0(x(t), c(t)) dt ,

with x(t) solution of

dx i

dt
= f i(x(t), c(t)), i = 1, 2, . . . , n ,

define the Hamiltonian function

H(λ, x, c) = λ · f(x, c) =
n∑

j=0

λj f j(x, c)
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Characterization of the optimal control

- Adjoint system
dλi

dt
= −

∂H

∂x i
, i = 1, 2, . . . , n

- Transversality conditions λi(T) = 0, i = 1, 2, . . . , n

- Optimality condition
∂H

∂c
= 0

- Try to determine c∗ = c∗(x∗, λ) from the optimality equation
Hc = 0

- Substitute c∗ in the differential equations of the Hamiltonian
system made up of the model differential equations for x and
of the adjoint equations for λ

- Solve these equations with boundary conditions (initial and
final, respectively)

- Explicit expression for the optimal control
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SI model – Quadratic costs

SI epidemic model (in the limit of vanishing removal rate)Ṡ = r S
(
1 −

S + I
K

)
− βSI − c S,

İ = βSI − (α+ µ+ c) I,

S(0) = S0, I(0) = I0

min
c(t)∈U

∫ T

0

[
I(t)γ + Pc(t)2

]
dt , γ = 1, 2

Optimal control

c∗ = max
(
0,min

(
ĉ, cmax

))
, where ĉ =

λ1(t)S(t) + λ2(t)I(t)
2P

.
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Linear costs J(c) =
∫ [

I(t) + Pc(t)
]
dt

Optimal control

c∗(t) =


0 if ψ(t) > 0

csing if ψ(t) = 0

cmax if ψ(t) < 0 ,

with ψ(t) =
∂H

∂c
= P − λ1S − λ2I switching function;

csing = −
R(S, I)
Q(S, I)

singular control of order 2.

Generalized Legendre Clebsch condition (for the singular control to
be optimal)

(−1)2 ∂

∂c

[
d4

dt4

∂H

∂c

]
= Q ≥ 0

Q(S, I) =
(Pβ − 1)SI

S + I
(α+ µ+ r)

[
βS −

( r
K

+ β
)

I
]
.
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Optimal control for fast epidemics

Ṡ = −βSI − c S,

İ = βSI − (α+ c) I,

Theoretical results for fast epidemic model with linear costs

Theorem
The optimal control c∗ is bang-bang,

µ
(
{ t ∈ [0,T ] : ψ(t) = 0 }

)
= 0 .

Theorem
Epidemic-transient phase culling cannot occur

ψ(0) =
∂H

∂c

∣∣∣∣∣∣
t=0

> 0 ⇒ ψ(t) =
∂H

∂c
> 0 , ∀ t .
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Optimal culling: numerical simulations – quadratic costs

Numerical discretization: Forward-Backward Sweep method
(Lenhart 2007)
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Figure: T = 16 years. Initial conditions S(0) = K , I(0) = 1.
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Optimal culling – linear costs
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Sensitivity analysis – linear costs

The optimal control depends on the parameters of the model

⇓

- Extensive numerical study by varying R0, culling cost P,
virulence parameters α, β

- Classification of results according to reactive culling ( •),
epidemic-transient phase culling ( 4), or no culling ( ∗)

( •) 0

0

0.1

t

c

( 4) 0

0

0.1

t

c
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Numerical results SI – Variation of α and P
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Figure: T = 6 years. α (0 ≤ α ≤ 16, step 0.5), P (40 ≤ P ≤ 120, step 2)
and β = R0

α+µ
K with R0 = 4.6154 .
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Numerical results SI – Variation of R0 and P
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Figure: T = 5 years. P (40 ≤ P ≤ 120 step 2), R0 (1.2 ≤ R0 ≤ 5, step
0.1) and β = R0

α+µ
K .
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Effect of immunity on optimal culling

SIR epidemic model
Ṡ = r S

(
1 −

S + I + R
K

)
+ νR − βSI − c(t) S ,

İ = βSI − (α+ µ+ η+ c(t)) I ,

Ṙ = ηI − (µ+ c(t)) R ,

S(0) = K , I(0) = 1, R(0) = 0 .

Objective cost function to minimize

J(c) =

∫ T

0

(
I(t) + Pc(t)

)
dt , 0 ≤ c(t) ≤ cmax .

Hamiltonian functional:

H =I + Pc + λ1ν(S + R) − λ1
r
K

(
S + I + R

)
S − λ1(µ+ c)S

− λ1βSI + λ2βSI − λ2(α+ µ+ η+ c) I + λ3ηI − λ3(µ+ c) R .
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İ = βSI − (α+ µ+ η+ c(t)) I ,
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Numerical results SIR – Variation of η and P
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Figure: T = 1.5 years. P (30 ≤ P ≤ 120, step 2), η (0 ≤ η ≤ 7, step 0.25)
and β = R0

α+µ+η
K with R0 = 4.6154 .
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Numerical results SIR – Variation of R0 and P
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Figure: T = 2.5 years. P (30 ≤ P ≤ 120, step 2), R0 (2 ≤ R0 ≤ 5 step
0.1) and β = R0

α+µ+η
K (η = 1, α = 4).
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Conclusions

Reactive culling when

Fast course of epidemics

Low culling costs

High immunity

Wait when

High virulence

High culling costs
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